Gpufit Documentation
Release 1.2.0

Gpufit

Jan 28, 2022

CONTENTS

1 Introduction 1
1.1 Howtocite Gpufit e 2
1.2 Hardwarerequirements Lo e e e e e e e e e e 2
1.3 Software requirementso e e e e e e e e e 2

2 Installation and Testing 3
2.1 Gpufit binary distribution L. 3
2.2 Building fromsource code L. e 3

22,1 PrerequiSites i e e e e e e e e e e e e e e e e e e e 4
2.2.2 Source code availability e 4
2.2.3 Compiler configurationviaCMake L. 4
2.2.4 Using the CMake Graphical User Interface 5
2.2.5 Running CMake from the command line 5
2.2.6 Common issues encountered during CMake configuration. 5
2.277 Compiling Gpufiton Windows e 6
2.2.8 Compiling Gpufiton Linux L 6
229 MacOS . . . e e e 7
2.3 UsingcuBLAS e e 7
2.4 Running the performance test L. e 7
3 Gpufit API description 9
3.1 Clnterface e e 9
311 gpufit) ... e e e e 9
3.1.2 gpufit_constrained() e e e e e e e e 13
3.1.3 gpufit_cuda_interface() 14
3.1.4 gpufit_constrained_cuda_interface() 0oL 15
3.1.5 gpufit_portable_interface() 16
3.1.6 gpufit_constrained_portable_interface() 17
3.1.7 gpufit_get_last_error() e e e e e e e e e e e e e 18
3.1.8 gpufit_cuda_available() e e e 18
3.1.9 gpufit_get_cuda_version() L e 18

4 Fit Model functions 19
4.1 Note: Handling of independent variables 19
4.2 Linearregressiono e e e e e e e e 19
43 1D Gaussian function e 20
4.4 2D Gaussian function (cylindrical symmetry) oo 20
4.5 2D Gaussian function (elliptical) e 21
4.6 2D Gaussian function (elliptical, rotated) L L e 21
4.7 2D Cauchy function (elliptical) 22
4.8 1D Splinefunction L. e e e 22
4.9 2D Splinefunction L e e e 23
4.10 3D Splinefunction L e e e e 23
4.11 3D Multichannel Spline function 24

4.12 3D Multichannel Spline function with variable phase

5 Estimator functions
5.1 Leastsquares estimator it e e e e e e e e e e e e e e e e
5.2 Maximum likelihood estimator for data subject to Poisson statistics

6 Examples in C++

6.1 Simple example (minimal call to gpufit())
6.2 Example of 2D Gaussian fits L L. e e e e e e

6.2.1 Output StatistiCs o o e e e e e e e e e e e e e
6.3 Linear Regression Example e

7 Customization

7.1 Addanew fit model function e
7.2 Addanew fitestimator e e e e e e e e e
7.3 Futurereleases e e e e

8 External bindings

8.1 Optional parameters with default values L.
82 Python e e
8.2.1 Installation e e e e e e e e e
8.2.2 PythonlInterface. e e e e
8.2.3 Python Examples e e e e
8.3 Matlab e e e e e e e e e
8.3.1 MatlabInterface e
832 MatlabExamples
8.4 Java e e e e e e e
8.4.1 Installation e e e e e e e e e e e
842 Javalnterface e e e e e e
84.3 JavaExample L. e e
9 Appendix
9.1 Levenberg-Marquardt algorithm
9.2 Performance comparison to other GPU benchmarks

10 Gpufit software license

25
25
25

26
26
27
30
31

33
33
34
36

37
37
37
38
38
40
4
42
44
45
46
46
48

51
51
51

54

CHAPTER
ONE

INTRODUCTION

Gpufit is a GPU-accelerated CUDA implementation of the Levenberg-Marquardt algorithm. It was developed to
meet the need for a high performance, general- purpose nonlinear curve fitting software library which is publicly
available and open source.

Optimization algorithms are ubiquitous tools employed in many field of science and technology. One such algo-
rithm for numerical, non-linear optimization is the Levenberg-Marquardt algorithm (LMA). The LMA combines
elements of the method of steepest descent and Newton’s method, and has become a standard algorithm for least-
squares fitting. Box constraints on parameter values can be added as suitable projections during the optimization
steps.

Although the LMA is, in itself, an efficient optimization algorithm, applications requiring many iterations of this
procedure may encounter limitations due to the sheer number of calculations involved. The time required for the
convergence of a fit, or a set of fits, can determine an application’s feasibility, e.g. in the context of real-time data
processing and feedback systems. Alternatively, in the case of very large datasets, the time required to solve a
particular optimization problem may prove impractical.

In recent years, advanced graphics processing units (GPUs) and the development of general purpose GPU pro-
gramming have enabled fast and parallelized computing by shifting calculations from the CPU to the GPU. The
large number of independent computing units available on a modern GPU enables the rapid execution of many
instructions in parallel, with an overall computation power far exceeding that of a CPU. Languages such as CUDA
C and OpenCL allow GPU- based programs to be developed in a manner similar to conventional software, but with
an inherently parallelized structure. These developments have led to the creation of new GPU-accelerated tools,
such as the Gpulfit.

Gpufit supports cubic spline functions that can be used to approximate arbitrary (smooth) fit model functions. In
order to use them a spline representation of the model function must be provided (as an array of suitable spline
coefficients). See Gpuspline on Github for details on how to compute these spline representations.

This manual describes how to install and build the Gpufit library and its external bindings. Furthermore it details
how to extend Gpufit by adding custom model functions as well as custom fit estimator functions.

The documentation includes:
* Instructions for building and installing Gpufit
* A detailed description of the C interface
¢ A description of the built-in model functions
* A description of the built-in goodness-of-fit estimator functions
* A detailed description of the external bindings to Matlab and Python
» Usage examples for C, Matlab, and Python
¢ Instructions for adding custom model functions or custom estimator functions

The current version of the Gpufit library is 1.2.0 (see homepage). This manual was compiled on Jan 28, 2022.

https://github.com/gpufit/Gpuspline
http://github.com/gpufit/Gpufit

Gpufit Documentation, Release 1.2.0

1.1 How to cite Gpufit

Gpufit was created by Mark Bates, Adrian Przybylski, Bjorn Thiel, and Jan Keller-Findeisen at the Max Planck
Institute for Biophysical Chemistry, in Gottingen, Germany.

The development and maintenance of open-source software projects, such as Gpulfit, requires significant time and
resources from the project team. If you use Gpufit in your research, please cite our publication. A paper describing
the Gpulfit software was published in the journal Scientific Reports, and is available from the Scientific Reports
website (open-access), [here](https://www.nature.com/articles/s41598-017-15313-9).

The citation for the Gpulfit paper is as follows:

Gpufit: An open-source toolkit for GPU-accelerated curve fitting
Adrian Przybylski, Bjorn Thiel, Jan Keller-Findeisen, Bernd Stock, and Mark Bates
Scientific Reports, vol. 7, 15722 (2017); doi: https://doi.org/10.1038/s41598-017-15313-9

1.2 Hardware requirements

Because the fit algorithm is implemented in CUDA C, a CUDA-compatible graphics card is required to run Gpufit.
The minimum supported compute capability is 2.0. More advanced GPU hardware will result in higher fitting
performance.

1.3 Software requirements

In addition to a compatible GPU, the graphics card driver installed on the host computer must be compatible with
the version of the CUDA toolkit which was used to compile Gpufit. This may present an issue for older graphics
cards or for computers running outdated graphics drivers.

At the time of its initial release in 2017, Gpufit was compiled with CUDA toolkit version 8.0. Therefore, the
Nvidia graphics driver installed on the host PC must be at least version 367.48 (released July 2016) in order to be
compatible with the binary files generated in this build.

When compatibility issues arise, there are two possible solutions. The best option is to update the graphics driver
to a version which is compatible with the CUDA toolkit used to build Gpufit. The second option is to re-compile
Gpufit from source code, using an earlier version of the CUDA toolkit which is compatible with the graphics driver
in question. However, this solution is likely to result in slower performance of the Gpufit code, since older versions
of the CUDA toolkit are not as efficient.

Note that all CUDA-supported graphics cards should be compatible with CUDA toolkit version 6.5. This is the last
version of CUDA which supported GPUs with compute capability 1.x. In other words, an updated Nvidia graphics
driver should be available for all CUDA-enabled GPUs which is compatible with toolkit version 6.5.

If you are unsure if your graphics card is CUDA-compatible, a lists of CUDA supported GPUs can be found here.

1.1. How to cite Gpufit 2

https://www.nature.com/articles/s41598-017-15313-9
http://developer.nvidia.com/cuda-zone
http://developer.nvidia.com/cuda-gpus

CHAPTER
TWO

INSTALLATION AND TESTING

The Gpufit library can be used in several ways. When using a pre-compiled binary version of Gpufit, the Gpufit
functions may be accessed directly via a dynamic linked library (e.g. Gpulfit.dll) or via the external bindings
to Gpufit (e.g. the Matlab or Python bindings). For more information on the Gpufit interface, see Gpufit API
description (page 9), or for details of the external bindings see External bindings (page 37).

This section describes how to compile Gpufit, including generating its external bindings, from source code. Build-
ing from source is necessary when a fit model function is added or changed, or if a new fit estimator is required.
Building the library may also be useful for compiling the code using a specific version of the CUDA toolkit, or for
a particular CUDA compute capability.

2.1 Gpufit binary distribution

A binary distribution of the Gpufit library is available for Windows. Use of this distribution requires only a CUDA-
capable graphics card, and an updated Nvidia graphics driver. The binary package contains:

* The Gpufit SDK, which consists of the 32-bit and 64-bit DLL files, and the Gpufit header file which con-
tains the function definitions. The Gpufit SDK is intended to be used when calling Gpufit from an external
application written in e.g. C code.

» The performance test application, which serves to test that Gpufit is correctly installed, and to check the
performance of the CPU and GPU hardware.

* Matlab 32 bit and 64 bit bindings, with Matlab examples.

* Python version 2.x and version 3.x bindings (compiled as wheel files) and Python examples.
* Java 8 32 bit and 64 bit bindings, with Java examples.

* This manual in PDF format.

To re-build the binary distribution, see the instructions located in package/README.md.

2.2 Building from source code

This section describes how to build Gpufit from source code. Note that as of the initial release of Gpufit, the source
code has been tested only with the Microsoft Visual Studio compiler.

Gpufit Documentation, Release 1.2.0

2.2.1 Prerequisites

The following tools are required in order to build Gpufit from source.
Required
* CMake 3.11 or later
* A C/C++ Compiler
— Linux: GCC 4 (tested with 4-6)
— Windows: Visual Studio 2013 (tested with 2013 - 2019)
o CUDA Toolkit 6.5 or later (tested with 6.5-11.4)!
Optional
* Boost 1.58 or later (required if you want to build the tests)
* MATLAB if building the MATLAB bindings (minimum version Matlab 2012a)

* Python if building the Python bindings (Python version 2.x or 3.x). Note that the “wheel” package is required
when building the Python binding.

e Java if building the Java bindings (minimum Java JDK version 8)
* PDF Latex installation (like Miktex) if converting the documentation from Latex to PDF.

2.2.2 Source code availability

The source code is available in an open repository hosted at Github, at the following URL.

https://github.com/gpufit/Gpufit.git

To obtain the code, Git may be used to clone the repository, or a current snapshot may be downloaded directly from
Github as Gpufit-master.zip.

2.2.3 Compiler configuration via CMake

CMake is an open-source tool designed to build, test, and package software. It is used to control the software
compilation process using compiler independent configuration files, and generate native makefiles and workspaces
that can be used in the compiler environment. In this section we provide a simple example of how to use CMake
in order to generate the input files for the compiler (e.g. the Visual Studio solution file), which can then be used to
compile Gpufit.

First, identify the directory which contains the Gpulfit source code (for example, on a Windows computer the Gpufit
source code may be stored in C:\Sources\Gpufit). Next, create a build directory outside the source code source
directory (e.g. C:\Sources\Gpufit-build-64). Finally, run cmake to configure and generate the compiler input files.

I Note that it is recommended to use the newest available stable release of the CUDA Toolkit which is compatible with the compiler (e.g.
Visual Studio 2015 is required in order to use CUDA Toolkit 8.0). Some older graphics cards may only be supported by CUDA Toolkit version
6.5 or earlier. Also, when using CUDA Toolkit version 6.5, please use the version with support for GTX9xx GPUs, available here.

2.2. Building from source code 4

http://www.cmake.org
http://developer.nvidia.com/cuda-zone
http://www.boost.org
http://www.mathworks.com/products/matlab.html
http://www.python.org
https://github.com/gpufit/Gpufit/archive/master.zip
https://developer.nvidia.com/cuda-downloads-geforce-gtx9xx

Gpufit Documentation, Release 1.2.0

2.2.4 Using the CMake Graphical User Interface

There is a graphical user interface available for CMake, which simplifies the configuration and generation steps.
For further details, see Running CMake. The following steps outline how to use the basic features of the CMake
GUL

First, select the source code directory (the top level directory where the Gpufit source code is located), and the build
directory (where the binaries will be built). For this example, the source directory might be C:\Sources\Gpufit, and
the build directory might be C:\Sources\Gpufit-build-64.

Next, click the “Configure” button, and select the desired compiler from the drop down list (e.g. Visual Studio 12
2013). Under Optional platform for Generator, select the desired architecture (e.g. x64 to compile 64-bit binaries).

Once configuration is complete, CMake will have automatically found the Matlab installation, and the installation
directories will be listed in the NAME and VALUE columns. If the Matlab installation was not found, the entries
in the VALUE column can be manually edited.

Next, click on Generate to generate the Visual Studio solution files, which will be used to build the Gpufit package.

2.2.5 Running CMake from the command line

The following commands, executed from the command prompt, assume that the cmake executable (e.g. C:\Program
Files\CMake\bin\cmake.exe) is automatically found via the PATH environment variable (if not, the full path to
cmake.exe must be specified). This example also assumes that the source and build directories have been set up as
specified above.

cd C:\Sources\Gpufit-build-64
cmake -G "Visual Studio 12 2013 Win64" C:\Sources\Gpufit

Note that in this example the -G flag has been used to specify the 64-bit version of the Visual Studio 12 compiler.
This flag should be changed depending on the compiler used, and the desired architecture (e.g. 32- or 64-bit).
Further details of the CMake command line arguments can be found here.

There is also a graphical user interface available for CMake, which simplifies the configuration and generation
steps. For further details, see Running CMake.

2.2.6 Common issues encountered during CMake configuration

It’s strongly recommended to use the latest available CMake version. Especially the find CUDA, Matlab, Python
capabilities of CMake get updated often.

Boost NOT found - skipping tests!

If you want to build the tests and Boost is not found automatically, set the CMake variable BOOST_ROOT to the
corresponding directory, and configure again.

JAVA JNI NOT found - skipping Gpufit Java binding!

If you want to build the Java binding and CMake cannot find Java, you can set the CMake variable JAVA_HOME
to specify a Java installation explicitely.

Specify CUDA_ARCHITECTURES set

If you mneed a specific CUDA architecture, set CUDA_ARCHITECTURES according to
CUDA_SELECT_NVCC_ARCH_FLAGS.

CMake finds last installed CUDA toolkit version by default

If there are multiple CUDA toolkits installed on the computer, CMake 3.7.1 seems to find by default
the lowest installed version. In this case set the desired CUDA version manually (e.g. by editing the
CUDA_TOOLKIT_ROOT_DIR variable in CMake).

Specify CUDA version to use

2.2. Building from source code 5

https://cmake.org/runningcmake/
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/runningcmake/
http://cmake.org/cmake/help/v3.7/module/FindCUDA.html

Gpufit Documentation, Release 1.2.0

Set CUDA_BIN_PATH before running CMake or CUDA_TOOLKIT_ROOT_DIR after first CMAKE configura-
tion to the installation folder of the desired CUDA version.

Required CUDA version
When using Microsoft Visual Studio 2015, the minimum required CUDA Toolkit version is 8.0.
No suitable Matlab and/or MX_Library version found - skipping Gpufit Matlab binding!

CMake might not be able to locate Matlab, in which case this message will be shown. Try
to set the Matlab_ROOT_DIR variable manually (for example “C:/Program FilessMATLAB/R2020b” or
“/usr/local/Matlab/2020b” on Linux) and run CMake again.

Python launcher

Set Python_ WORKING_DIRECTORY to a valid directory, it will be added to the Python path.
Matlab launcher

Set Matlab_ WORKING_DIRECTORY to a valid directory, it will be added to the Matlab path.
Documentation build issues

Note that the several Python packages are required to run the “documentation_create_latex.bat” script on Windows
systems. Please ensure that the “sphinx” and “sphinx_rtd_style” packages are installed in your Python distribution.

PDFLATEX not found

When using Miktex, if the PDFLATEX package is not automatically found, the path to pdflatex.exe can be specified
to CMake with the MIKTEX_BINARY_PATH variable (available under Advanced options).

2.2.7 Compiling Gpufit on Windows

After configuring and generating the solution files using CMake, go to the desired build directory and open Gpu-
fit.sln using Visual Studio. Select the “Debug” or ‘“Release” build options, as appropriate. Select the build target
“ALL_BUILD”, and build this target. If the build process completes without errors, the Gpufit binary files will be
created in the corresponding “Debug” or “Release” folders in the build directory.

The unit tests can be executed by building the target “RUN_TESTS” or by starting the created executables in the
output directory from the command line.

2.2.8 Compiling Gpufit on Linux

A successful build has been verified on Ubuntu 18.04 LTS with gcc 5.5 and CUDA 9.1 following the instructions
on the N'Vidia website. CMake needs to be at least version 3.11. To perform the tests, a development version of
Boost should be installed (e.g. libboost-all-dev).

The following commands were executed.

git clone https://github.com/gpufit/Gpufit.git Gpufit
mkdir Gpufit-build

cd Gpufit-build

cmake -DCMAKE_BUILD_TYPE=RELEASE ../Gpufit

make

In case, during make there is an error “unsupported GNU version! gcc versions later than X are not supported”,
it means that CUDA needs an older version of gcc. Provided that such a version is installed on the system you
can choose it with the -DCMAKE_C_COMPILER option to cmake. For example, for CUDA 9 one should add
-DCMAKE_C_COMPILER=gcc-5 in the call to cmake.

The tests can be run for example by “make test”. Run the performance comparison with

./Gpufit_Cpufit_performance_comparison

To install the Python package

2.2. Building from source code 6

https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=debnetwork

Gpufit Documentation, Release 1.2.0

cd pyGpufit/dist
pip install pyGpufit-X.Y.Z-py2.py3-none-any.whl

To run the Matlab package you need to tell Matlab to use a newer version of the C++ standard library

export LD_PRELOAD=/usr/lib/x86_64-1linux-gnu/libstdc++.s0.6
matlab

Then in Matlab add the matlab output directory to the path and execute some examples.

addpath('XX/Gpufit-build/matlab');
cd('XX/Gpufit/Gpufit/matlab/examples’');
gauss2d();

2.2.9 MacOS

Gpulfit has not yet been officially tested on a computer running MacOS with a CUDA capable graphics card. How-
ever, satisfying the Prerequisites (page 4) and using CMake, we estimate that the library should build in principle
and one should also be able to run the examples on MacOS.

2.3 Using cuBLAS

Optionally, Gpufit may be configured to make use of the cuBLAS library. This library is used for solving the
equation system during the fit process.

Several benefits are obtained by using cuBLAS:
e Moderately faster fitting performance.
* Improved numerical stability.

e The number of fit model parameters may be as high as the number of threads per GPU thread block (1024).
Without cuBLAS, the maximum number of model parameters is limited to 31.

To include cuBLAS functionality in Gpufit, the USE_CUBLAS flag may be set during the CMAKE configuration
step. Note that the Gpufit cuBLAS feature is only available for 64-bit architectures, and for code built with CUDA
toolkit version >= 7.0. Finally, it is important to note that cuBLAS is not statically linked in the Gpufit DLL, but
rather it is dynamically linked. Hence, when distributing applications, the cuBLAS DLL (e.g. cublas64_80.dll for
CUDA toolkit version 8) must be packaged along with Gpufit.dll.

2.4 Running the performance test

The Gpufit performance test is a program which verifies the correct function of Gpufit, and tests the fitting speed
in comparison with the same algorithm executed on the CPU.

If Gpufit was built from source, running the build target GPUFIT_CPUFIT_Performance_Comparison will run the
test, which executes the fitting process multiple times, varying the number of fits per function call. The execution
time is measured in each case and the relative speed improvement between the GPU and the CPU is calculated. A
successful run of the performance test also indicates also that Gpulfit is functioning correctly.

The performance comparison is also included in the Gpufit binary distribution as a console application. An example
of the program’s output is shown in Fig. 2.1.

2.3. Using cuBLAS 7

Gpufit Documentation, Release 1.2.0

Performa

Please note that execution speed test results depend on
the details of the CPU and GPU hardware.

CUDA runtime version: 6.5
CUDA driver version: 7.5
Generating test parameters
Generating data

Adding noise

Number Cpufit speed | Gpufit speed Performance
(fFitsrsd {fitsrs) gain factor

i
16600008 2673797

Test completed?
Press ENTER to exit

Fig. 2.1: Output of the Gpufit vs Cpufit performance comparison

2.4. Running the performance test 8

CHAPTER
THREE

GPUFIT API DESCRIPTION

The Gpulfit source code compiles to a dynamic-link library (DLL), providing a C interface. In the sections below,
the C interface and its arguments are described in detail.

3.1

C Interface

The C interface is defined in the Gpufit header file: gpufit.h.

3.1.1 gpufit()

This is the main fit function. A single call to the gpufit() function executes a block of N fits. The inputs to
gpufit() are scalars and pointers to arrays, and the outputs are also array pointers.

The inputs to the gpufit () function are:

the number of fits (),

the number of data points per fit (each fit has equal size),

the fit data,

an array of weight values that are used to weight the individual data points in the fit (optional),
an ID number which specifies the fit model function,

an array of initial parameters for the model functions,

a tolerance value which determines when the fit has converged,

the maximum number of iterations per fit,

an array of flags which allow one or more fit parameters to be held constant,
an ID number which specifies the fit estimator (e.g. least squares, etc.),

the size of the user info data,

the user info data, which may have multiple uses, for example to pass additional parameters to the fit func-
tions, or to include independent variables (e.g. X values) with the fit data.

The outputs of gpufit () are:

the best fit model parameters for each fit,
an array of flags indicating, for example, whether each fit converged,
the final value of x? for each fit,

the number of iterations needed for each fit to converge.

The gpufit () function call is defined below.

https://github.com/gpufit/Gpufit/blob/master/Gpufit/gpufit.h

Gpufit Documentation, Release 1.2.0

int gpufit
(
size_t n_fits,
size_t n_points,
float * data,
float * weights,
int model_id,
float * initial_parameters,
float tolerance,
int max_n_iterations,
int * parameters_to_fit,
int estimator_id,
size_t user_info_size,
char * user_info,
float * output_parameters,
int * output_states,
float * output_chi_squares,
int * output_n_iterations

Description of input parameters

n_fits Number of fits to be performed
type size_t
n_points Number of data points per fit
Gpufit is designed such that each fit must have the same number of data points per fit.
type size_t
data Pointer to data values

A pointer to the data values. The data must be passed in as a 1D array of floating point values,
with the data for each fit concatenated one after another. In the case of multi-dimensional data,
the data must be flattened to a 1D array. The number of elements in the array is equal to the
product n_fits * n_points.

type float *
length n_points * n_fits
weights Pointer to weights

The weights array includes unique weighting values for each fit. It is used only by the least
squares estimator (LSE). The size of the weights array and its organization is identical to that for
the data array. For statistical weighting, this parameter should be set equal to the inverse of the
variance of the data (i.e. weights = 1.0 / variance). The weights array is an optional input.

type float *
length n_points * n_fits

special Use a NULL pointer to indicate that no weights are provided. In this case all
data values will be weighted equally.

model_id Model ID

Determines the model which is used for all fits in this call. See Fir Model functions (page 19) for
more details.

As defined in constants.h:
0 GAUSS_1D
1 GAUSS_2D
2 GAUSS_2D_ELLIPTIC

3.1. C Interface 10

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

3 GAUSS_2D_ROTATED
4 CAUCHY_2D_ELLIPTIC
5 LINEAR_1D
type int
initial_parameters Pointer to initial parameter values

A 1D array containing the initial model parameter values for each fit. If the number of parameters
of the fit model is defined by n_parameters, then the size of this array is n_fits * n_parameters.

The parameter values for each fit are concatenated one after another. If there are M parameters
per fit, the parameters array is organized as follows: [(parameter 1), (parameter 2), ..., (parameter
M), (parameter 1), (parameter 2), ..., (parameter M), ...].

type float *
length n_fits * n_parameters
tolerance Fit tolerance threshold

The fit tolerance determines when the fit has converged. After each fit iteration, the change in
the absolute value of x?2 is calculated. The fit has converged when one of two conditions are
met. First, if the change in the absolute value of X2 is less than the tolerance value, the fit has
converged. Alternatively, if the change in x? is less than the product of tolerance and the absolute
value of x? [tolerance * abs(x?)], then the fit has converged.

Setting a lower value for the tolerance results in more precise values for the fit parameters, but
requires more fit iterations to reach convergence.

A typical value for the tolerance settings is between 1.0E-3 and 1.0E-6.
type float
max_n_iterations Maximum number of iterations

The maximum number of fit iterations permitted. If the fit has not converged after this number
of iterations, the fit returns with a status value indicating that the maximum number of iterations
was reached.

type int

parameters_to_fit Pointer to array indicating which model parameters should be held constant during
the fit

This is an array of ones or zeros, with a length equal to the number of parameters of the fit model
function. Each entry in the array is a flag which determines whether or not the corresponding
model parameter will be held constant during the fit. To allow a parameter to vary during the fit,
set the entry in parameters_to_fit equal to one. To hold the value constant, set the entry to zero.

An array of ones, e.g. [1,1,1,1,1,...] will allow all parameters to vary during the fit.
type int *
length n_parameters
estimator_id Estimator ID
Determines the fit estimator which is used. See Estimator functions (page 25) for more details.
As defined in constants.h:
0 LSE
1 MLE
type int
user_info_size Size of user information data

Size of the user information data array, in bytes.

. C Interface 11

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

type size_t
user_info Pointer to user information data

This parameter is intended to provide flexibility to the Gpulfit interface. The user information
data is a generic block of memory which is passed in to the gpufit() function, and which
is accessible in shared GPU memory by the fit model functions and the estimator functions.
Possible uses for the user information data are to pass in values for independent variables (e.g.
X values) or to supply additional data to the fit model function or estimator. The documentation
of the fit model function or estimator must specify the composition of the user info data. For a
coded example which makes use of the user information data, see Linear Regression Example
(page 31). The user information data is an optional parameter - if no user information is required
this parameter may be set to NULL.

type char *
length user_info_size

special Use a NULL pointer to indicate that no user information is available. The
interpretation of the user info depends completely on the used fit model function
or estimator.

Description of output parameters

output_parameters Pointer to array of best-fit model parameters

For each fit, this array contains the best-fit model parameters. The array is organized identically
to the input parameters array.

type float *
length n_fits * n_parameters
output_states Pointer to array of fit result state IDs

For each fit the result of the fit is indicated by a state ID. The state ID codes are defined below.
A state ID of 0 indicates that the fit converged successfully.

As defined in constants.h:

0 The fit converged, tolerance is satisfied, the maximum number of iterations
is not exceeded

1 Maximum number of iterations exceeded

2 During the Gauss-Jordan elimination the Hessian matrix is indicated as sin-
gular

3 Non-positive curve values have been detected while using MLE (MLE re-
quires only positive curve values)

4 State not read from GPU Memory
type int *
length n_fits
output_chi_squares Pointer to array of y? values

For each fit, this array contains the final x? value, as returned by the estimator function (see
Estimator functions (page 25)).

type float *
length n_fits
output_n_iterations Pointer to array of iteration counts

For each fit, this array contains the number of fit iterations which were performed.

3.1. C Interface 12

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

type int *
length n_fits
return value Status code

The return value of the function call indicates whether an error occurred. As defined in con-
stants.h.

0 No error

-1 Error

3.1.2 gpufit_constrained()

This is very similar to the gpufit() function but with the additional possibility to add box constraints on the
allowed parameter ranges.

The gpufit_constrained() function call is defined below.

int

(

gpufit_constrained

size_t n_fits,

size_t n_points,

float * data,

float * weights,

int model_id,

float * initial_parameters,
float * constraints,

int * constraint_types,
float tolerance,

int max_n_iterations,

int * parameters_to_fit,
int estimator_id,

size_t user_info_size,

char * user_info,

float * output_parameters,
int * output_states,

float * output_chi_squares,
int * output_n_iterations

In order to not repeat the same information all input and output parameters in gpufit_constrained() that also
exist in gpufit () have exactly the same definition and interpretation. Below only the additional input parameter
regarding the constraints are explained.

Description of constraints input parameters

constraints Pointer to model parameter constraint intervals

A 1D array containing the model parameter constraint lower and upper bounds for all parameters
(including fixed parameters) and for all fits. Order is lower, upper bound first, then parameters,
then number of fits.

type float *
length n_fits * n_parameters * 2
constraint_types Pointer to constraint types for each parameter

A 1D array containing the constraint types for each parameter (including fixed parameters). The
constraint type is defined by an int with O - no constraint, 1 - only constrain lower bound, 2 - only
constrain upper bound, 3 - constrain both lower and upper bounds.

type int *

length n_parameters

3.1.

C Interface 13

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h
https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

3.1.3 gpufit_cuda_interface()

This function performs the fitting without transferring the input and output data between CPU and GPU memory.
The allocation of GPU memory for input and output data is skipped, as well. The structures of input and output
arrays are equal to the main interface function gpufit(). There are no separate arrays for initial and best-fit
parameter values. The argument gpu_£fit_parameters points to initial parameter values at start of the routine
and to best-fit parameter values at the end.

int gpufit_cuda_interface
(
size_t n_fits,
size_t n_points,
float * gpu_data,
float * gpu_weights,
int model_id,
float tolerance,
int max_n_iterations,
int * parameters_to_fit,
int estimator_id,
size_t user_info_size,
char * gpu_user_info,
float * gpu_fit_parameters,
int * gpu_output_states,
float * gpu_output_chi_squares,
int * gpu_output_n_iterations

Description of input parameters

n_fits Number of fits to be performed
type size_t
n_points Number of data points per fit
type size_t
gpu_data Pointer to data values stored on GPU
type float *
length n_points * n_fits
gpu_weights Pointer to weights stored on GPU
type float *
length n_points * n_fits

special Use a NULL pointer to indicate that no weights are provided. In this case all
data values will be weighted equally.

model_id Model ID
type int

tolerance Fit tolerance threshold
type float

max_n_iterations Maximum number of iterations
type int

parameters_to_fit Pointer to array indicating which model parameters should be held constant during
the fit

type int *

length n_parameters

3.1. C Interface 14

Gpufit Documentation, Release 1.2.0

estimator_id Estimator ID
type int

user_info_size Size of user information data
type size_t

gpu_user_info Pointer to user information data stored on GPU
type char *

length user_info_size

special Use a NULL pointer to indicate that no user information is available.

Description of input/output parameters

gpu_fit_parameters Pointer to array of model parameters stored on GPU
input: initial parameter values
output: best-fit parameter values
type float *

length n_fits * n_parameters

Description of output parameters

gpu_output_states Pointer to array of fit result state IDs stored on GPU
type int *
length n_fits

gpu_output_chi_squares Pointer to array of y? values stored on GPU
type float *
length n_fits

gpu_output_n_iterations Pointer to array of iteration counts stored on GPU
type int *
length n_fits

return value Status code
0 No error

-1 Error

3.1.4 gpufit_constrained_cuda_interface()

This function is very similar to the gpufit_cuda_interface() function but with the additional possibility to

add box constraints on the allowed parameter ranges.

int gpufit_constrained_cuda_interface
(

size_t n_fits,

size_t n_points,

float * gpu_data,

float * gpu_weights,

int model_id,

float tolerance,

int max_n_iterations,

(continues on next page)

3.1. C Interface

15

Gpufit Documentation, Release 1.2.0

(continued from previous page)

int * parameters_to_fit,

float * gpu_constraints,

int * constraint_types,

int estimator_id,

size_t user_info_size,

char * gpu_user_info,

float * gpu_fit_parameters,

int * gpu_output_states,

float * gpu_output_chi_squares,
int * gpu_output_n_iterations

In order to not repeat the same information all input and output parameters in
gpufit_constrained_cuda_interface() that also exist in gpufit_cuda_interface() have exactly
the same definition and interpretation. Below only the additional input parameter regarding the constraints are
explained.

Description of constraint input parameters

gpu_constraints Pointer to model parameter constraint intervals stored on the GPU

A 1D array containing the model parameter constraint lower and upper bounds for all parameters
(including fixed parameters) and for all fits. Order is lower, upper bound first, then parameters,
then number of fits.

type float *
length n_fits * n_parameters * 2
constraint_types Pointer to constraint types for each parameter

A 1D array containing the constraint types for each parameter (including fixed parameters). The
constraint type is defined by an int with O - no constraint, 1 - only constrain lower bound, 2 - only
constrain upper bound, 3 - constrain both lower and upper bounds.

type int *

length n_parameters

3.1.5 gpufit_portable_interface()

This function is a simple wrapper around the gpufit () function, providing an alternative means of passing the
function parameters.

’int gpufit_portable_interface(int argc, void *argv[]);

Description of parameters

argc The length of the argv pointer array

argv Array of pointers to gpufit parameters, as defined above. For reference, the type of each element
of the argv array is listed below.

argv[0] Number of fits
type size t*

argv[1] Number of points per fit
type size_t*

argv[2] Fit data
type float *

3.1. C Interface 16

Gpufit Documentation, Release 1.2.0

argv[3] Fit weights
type float *

argv[4] Fit model ID
type int *

argv[5] Initial parameters
type float *

argv[6] Fit tolerance
type float *

argv[7] Maximum number of iterations
type int *

argv[8] Parameters to fit
type int *

argv[9] Fit estimator ID
type int *

argv[10] User info size
type size_t*

argv[11] User info data
type char *

argv[12] Output parameters
type float *

argv[13] Output states
type int *

argv[14] Output x? values
type float *

argv[15] Output number of iterations
type int *

return value This function simply returns the gpufit () return status code.

3.1.6 gpufit_constrained_portable_interface()

This function is a simple wrapper around the gpufit_constrained() function, providing an alternative means
of passing the function parameters.

’ int gpufit_constrained_portable_interface(int argc, void *argv[]);

3.1. C Interface 17

Gpufit Documentation, Release 1.2.0

Description of parameters

argc The length of the argv pointer array
argv Array of pointers to gpufit_constrained parameters, as defined above.

return value This function simply returns the gpufit () return status code.

3.1.7 gpufit_get_last_error()

A function that returns a string representation of the last error.

’char const * gpufit_get_last_error();

return value Error message corresponding to the most recent error, or an empty string if no error
occurred.

‘CUDA driver version is insufficient for CUDA runtime version’ The graphics driver ver-
sion installed on the computer is not supported by the CUDA Toolkit version which was
used to build Gpufit.dll. Update the graphics driver or re-build Gpufit using a compatible
CUDA Toolkit version.

‘too many resources requested for launch’ Exceeded number of available registers per thread
block. Adding model functions to models.cuh can increase the number of registers per
thread used by the kernel cuda_calc_curve_values(). If this error occurs, comment out un-
used models in function calculate_model() in file models.cuh.

3.1.8 gpufit_cuda_available()

A function that calls a simple CUDA function to check if CUDA is available.

’int gpufit_cuda_available();

return value Returns O if CUDA is not available (no suitable device found, or driver version insuffi-
cient). Use the function gpufit_get_last_error() to check the error message. Returns 1 if CUDA
is available.

3.1.9 gpufit_get_cuda_version()

A function that returns the CUDA runtime version in runtime_version and the installed CUDA driver version in
driver_version.

’int gpufit_get_cuda_version(int * runtime_version, int * driver_version);

runtime_version Pointer to the CUDA runtime version number. Format is Minor version times 10
plus Major version times 1000. (is O if the CUDA runtime version is incompatible with the
installed CUDA driver version)

driver_version Pointer to the CUDA driver version number. Format is Minor version times 10 plus
Major version times 1000. (is 0 if no CUDA enabled graphics card was detected)

return value Status code
The return value of the function call indicates whether an error occurred.
0 No error

-1 Error. Use the function gpufit_get _last_error() to check the error message.

3.1. C Interface 18

CHAPTER
FOUR

FIT MODEL FUNCTIONS

This section describes the fit model functions which are included with the Gpufit library. The model IDs usable in
the call of the Gpufit C Interface (page 9) are defined in constants.h. Note that additional model functions may be
added as described in the documentation, see Customization (page 33).

4.1 Note: Handling of independent variables

We note that, in the current version of the Gpufit library, the indepenent variables (e.g. X values) corresponding
to the fit data are not passed into the gpufit() function. The default behavior of the fit models functions is to
assume the coordinates of the data values are uniformly spaced and monotonically increasing (see below).

However, the user_info parameter of the Gpufit interface allows arbitrary data to be passed to the model functions
and estimators. Hence, this mechanism may be used to supply independent variables to the fit. In the current
release, two model functions support this method: the linear regression model and the one-dimensional Gaussian
model. This is described in more detail in the sections below, and an example is given in the Examples section of
the documentation.

The Linear regression (page 19) and 1D Gaussian function (page 20) models provide an option to pass in custom
X coordinate values, using the user information parameter. In this case, the data type of the values must be single
precision floating point. The user has two options for how to use this mechanism: one set of X values may be
provided and used for all fits, or unique X values may be provided for all fits. The first option allows for faster
calculations, since it requires fewer data transfer operations. If no X values are provided, the models assume that
the data coordinates start with zero, as described above.

When calling Gpufit by its C Interface (page 9), the user information size parameter must be set to the product
of the number of values in the user information array and the size of the data type in bytes. The number of the X
coordinate values must be equal to the total number of data points, or the number of data points per fit.

4.2 Linear regression

A 1D linear function defined by two parameters (offset and slope). The model ID of this function is LINEAR_1D,
and it is implemented in linear_1d.cuh.

Optional: The X coordinate of each data point may be specified via the user information data parameter of the
Gpufit interface. The user information should then contain X coordinate values of type float in increasing order.

Default X coordinates If user information is not provided, the X coordinate of the first
data value is assumed to be (0.0). In this case, for a fit size of M data points, the X
coordinates of the data are set equal to the indices of the data array, starting from zero
(ie.0,1,2,....,M — 1).

Identical X coordinate values for all fits 1f the number of values in the user information
array is equal to the number of data points per fit, the same X coordinate values are
used for all fits.

19

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h
https://github.com/gpufit/Gpufit/tree/master/Gpufit/examples
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/linear_1d.cuh

Gpufit Documentation, Release 1.2.0

Unique X coordinate values for each fit If the number of values in the user information
array is equal to the total number of data points, unique X coordinate values are used
for each fit.
g(z,p) =po+mx
x (independent variable) X coordinate
The X coordinate values may be specified in the user information data. For details, see the linear
regression code example, Linear Regression Example (page 31).

p_0 offset
p_1 slope

4.3 1D Gaussian function

A 1D Gaussian function defined by four parameters. Its model ID is GAUSS_1D and it is implemented in
gauss_ld.cuh. The user information data may be used to specify the X coordinate of each data point. Here, p
is the vector of parameters (p0..p3) and the model function g exists for each X coordinate of the input data.

Optional: The X coordinate of each data point may be specified via the user information data parameter of the
Gpufit interface.

Default X coordinates 1If user information is not provided, the X coordinate of the first
data value is assumed to be (0.0). In this case, for a fit size of M data points, the X
coordinates of the data are set equal to the indices of the data array, starting from zero
(i.e.0,1,2,...., M — 1).

Identical X coordinate values for all fits If the number of values in the user information
array is equal to the number of data points per fit, the same X coordinate values are
used for all fits.

Unique X coordinate values for each fit 1f the number of values in the user information
array is equal to the total number of data points, unique X coordinate values are used

for each fit.

g(x, §) = poe~ @Y/ (22) 4 py
x (independent variable) X coordinate

The X coordinate values may be specified in the user information data. For details on how to do
this, see the linear regression code example, Linear Regression Example (page 31).

p_0 amplitude
p_1 center coordinate
p_2 width (standard deviation)

p_3 offset

4.4 2D Gaussian function (cylindrical symmetry)

A 2D Gaussian function defined by five parameters. Its model ID is GAUSS_2D and it is implemented in
gauss_2d.cuh. Here, p is the vector of parameters (p0..p4) and the model function g exists for each X,y coordinate
of the input data.

9(z,y,7) = poe— (@=P0 +w=p2)")/(205) 4,

4.3. 1D Gaussian function 20

https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/gauss_1d.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/gauss_2d.cuh

Gpufit Documentation, Release 1.2.0

x,y (independent variables) X,Y coordinates

p0
p_1
p2
p_3
p_4

No independent variables are passed to this model function. Hence, the (X,Y) coordinates of the
first data value are assumed to be (0.0, 0.0). The fit size is M x M data points (M*M=number of
data points in the interface), the (X,Y) coordinates of the data are simply the corresponding 2D
array indices of the data array, starting from zero.

amplitude

center coordinate x

center coordinate y

width (standard deviation; equal width in x and y dimensions)

offset

4.5 2D Gaussian function (elliptical)

A 2D elliptical Gaussian function defined by six parameters. Its model ID is GAUSS_2D_ELLIPTIC and it is
implemented in gauss_2d_elliptic.cuh. Here, p is the vector of parameters (p0..p5) and the model function g exists
for each x,y coordinate of the input data.

spi)2 N2
(z—py) +(y 1;2)

_1
g(z,y,p) = poe 2(r3 "4 >+p5

x,y (independent variables) X,Y coordinates

p0
p_1
p_2
p_3
p_4
p_S5

No independent variables are passed to this model function. Hence, the (X,Y) coordinates of the
first data value are assumed to be (0.0, 0.0). The fit size is M x M data points (M*M=number of
data points in the interface), the (X,Y) coordinates of the data are simply the corresponding 2D
array indices of the data array, starting from zero.

amplitude

center coordinate x

center coordinate y

width x (standard deviation)
width y (standard deviation)

offset

4.6 2D Gaussian function (elliptical, rotated)

A 2D elliptical Gaussian function whose principal axis may be rotated with respect to the X and Y coordinate axes,
defined by seven parameters. Its model is GAUSS_2D_ROTATED and it is implemented in gauss_2d_rotated.cuh.
Here, p is the vector of parameters (p0..p6) and the model function g exists for each x,y coordinate of the input

data.

Xy

(z—p1) cos pg—(y—p2) sin pg)? + ((z—p1) sin pg+(y—pa) cos pg)?
pl

()
9(x,y,P) = poe 73 71 + ps

(independent variables) X,Y coordinates

No independent variables are passed to this model function. Hence, the (X,Y) coordinates of the
first data value are assumed to be (0.0, 0.0). The fit size is M x M data points (M*M=number of
data points in the interface), the (X,Y) coordinates of the data are simply the corresponding 2D
array indices of the data array, starting from zero.

p_0 amplitude

p_1 center coordinate x

4.5. 2D Gaussian function (elliptical) 21

https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/gauss_2d_elliptic.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/gauss_2d_rotated.cuh

Gpufit Documentation, Release 1.2.0

p_2 center coordinate y

p_3 width x (standard deviation)

p_4 width y (standard deviation)

p_5 offset

p_6 rotation angle [radians]

4.7 2D Cauchy function (elliptical)

A 2D elliptical Cauchy function defined by six parameters. Its model ID is CAUCHY_2D_ELLIPTIC and it is im-
plemented in cauchy_2d_elliptic.cuh. Here, p is the vector of parameters (p0..p5) and the model function g exists
for each x,y coordinate of the input data.

g(l‘,y7ﬁ)=p0 P} P}
—Pp1 Yy—p2
(z2) +1(522) +1

x,y (independent variables) X,Y coordinates

p 0
p_1
p_2
p_3
p 4
p_S

No independent variables are passed to this model function. Hence, the (X,Y) coordinates of the
first data value are assumed to be (0.0, 0.0). The fit size is M x M data points (M*M=number of
data points in the interface), the (X,Y) coordinates of the data are simply the corresponding 2D
array indices of the data array, starting from zero.

amplitude

center coordinate x

center coordinate y

width x (standard deviation)
width y (standard deviation)

offset

4.8 1D Spline function

A 1D cubic spline function defined by 3 parameters and a set of cubic spline coefficients. See Gpuspline on Github
for details on how to compute the set of cubic spline coefficients from a data set so that it can be used here. The
model ID is SPLINE_1D and it is implemented in spline_1d.cuh. Here, p is the vector of parameters (p0..p2) and
c the vector of spline coefficients. The model function g exists for each x coordinate of the input data.

3
gz(xaﬁa) =p2 +p0 Z Ci,m,(x —1 *pl)m
m=0

x (independent variables) X coordinates

No independent variables are passed to this model function. Hence, the X coordinate of the first
data value is assumed to be 0.0. The fit size is M data points (M=number of data points in the
interface), the X coordinates of the data are simply the corresponding array indices of the data
array, starting from zero.

p_0 amplitude

p_1

center coordinate

p_2 offset

4.7. 2D Cauchy function (elliptical) 22

https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/cauchy2delliptic.cuh
https://github.com/gpufit/Gpuspline
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/spline_1d.cuh

Gpufit Documentation, Release 1.2.0

4.9 2D

A 2D cubic

Spline function

spline function defined by 4 parameters and a set of cubic spline coefficients. See Gpuspline on Github

for details on how to compute the set of cubic spline coefficients from a data set so that it can be used here. The
model ID is SPLINE_2D and it is implemented in spline_2d.cuh. Here, p is the vector of parameters (p0..p3) and
c the vector of spline coefficients. The model function g exists for each x,y coordinate of the input data.

3 3
9,5 (2, Y, D, Ci,j) = p3 + Po Z Zci,j,m,n(I —i—=p)"(y—J—p)"

m=0n=0

x,y (independent variables) X,Y coordinates

p0
p_1
p_2
p_3

No independent variables are passed to this model function. Hence, the (X,Y) coordinates of the
first data value are assumed to be (0.0, 0.0). The fit size is M x N data points (M*N=number of
data points in the interface), the (X,Y) coordinates of the data are simply the corresponding 2D
array indices of the data array, starting from zero.

amplitude
center coordinate x
center coordinate y

offsset

4.10 3D Spline function

A 3D cubic spline function defined by 5 parameters and a set of cubic spline coefficients. See Gpuspline on Github
for details on how to compute the set of cubic spline coefficients from a data set so that it can be used here. The
model ID is SPLINE_3D and it is implemented in spline_3d.cuh. Here, p is the vector of parameters (p0..p4) and
c the vector of spline coefficients. The model function g exists for each x,y,z coordinate of the input data.

3 3 3
9i,j.k(%, Y, 2,05 G j k) = Pa + Po Z Z Zci,j,k,m,n,o($ —i—p1)"(y—J—p2)"(z—k—p3)°

m=0n=0 o=0

x,y,Zz (independent variables) X,Y,Z coordinates

p_0
p_1
p2
p_3
p_4

No independent variables are passed to this model function. Hence, the (X,Y,Z) coordinates
of the first data value are assumed to be (0.0,0.0,0.0). The fit size is M x N x O data points
(M*N*O=number of data points in the interface), the (X,Y,Z) coordinates of the data are simply
the corresponding 3D array indices of the data array, starting from zero.

amplitude

center coordinate x
center coordinate y
center coordinate z

offset

4.9. 2D Spline function 23

https://github.com/gpufit/Gpuspline
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/spline_2d.cuh
https://github.com/gpufit/Gpuspline
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/spline_3d.cuh

Gpufit Documentation, Release 1.2.0

4.11 3D Multichannel Spline function

A 3D cubic spline function with multiple channels defined by 5 parameters and a set of cubic spline coefficients. See
Gpuspline on Github for details on how to compute the set of cubic spline coefficients from a data set so that it can
be used here. The model ID is SPLINE_3D_MULTICHANNEL and it is implemented in spline_3d_multichannel.cuh.
Here, p is the vector of parameters (p0..p4) and c the vector of spline coefficients. The model function g exists for
each x,y,z coordinate of the input data.

3 3 3
Geh,i gk (T3 Y, 2, D, Cenijk) = Pa+ Do Z Z chh,i,j,k,m,n,o(l’ —i—p1)"(y—J—p2)"(z—k—p3)°

m=0n=0 o=0

x,y,Zz (independent variables) X,Y,Z coordinates

No independent variables are passed to this model function. Hence, the (X,Y,Z) coordinates
of the first data value are assumed to be (0.0,0.0,0.0). The fit size is M x N x O data points
(M*N*O=number of data points in the interface), the (X,Y,Z) coordinates of the data are simply
the corresponding 3D array indices of the data array, starting from zero.

p_0 amplitude

p_1 center coordinate x
p_2 center coordinate y
p_3 center coordinate z

p_4 offset

4.12 3D Multichannel Spline function with variable phase

A 3D cubic spline function with multiple channels and a variable phase defined by 6 parameters and a set of cubic
spline coefficients. See Gpuspline on Github for details on how to compute the set of cubic spline coeflicients from
a data set so that it can be used here. The model ID is SPLINE_3D_PHASE_MULTICHANNEL and it is implemented
in spline_3d_phase_multichannel.cuh. Here, p is the vector of parameters (p0..p5) and c the vector of spline
coefficients. The model function g exists for each x,y,z coordinate of the input data.

Gehij k(T3 Y, 2,0, Co,ch,iyj ks Clichyigiks C2,chiigk) = Pa + Do (fo + cos(pd) f1 + sin(ps) f2)

3 3 3
Jo= Z Z Zco,ch,i,j,k,m,n,o(l“ —i—p1)"(y—J—p2)"(z—k—p3)°

m=0n=0 o=0

3 3 3
fi= Z Z ch,ch,i,j,k,m,n,o(l“ —i—p1)"(y—J—p2)"(z—k—p3)°

m=0n=0 o=0

3 3 3
f2= Z Z Zcz,ch,i,j,k,m,n,o(l“ —i—p1)"(y—J—p2)"(z—k—p3)°

m=0n=0 o=0

x,y,z (independent variables) X,Y,Z coordinates

No independent variables are passed to this model function. Hence, the (X,Y,Z) coordinates
of the first data value are assumed to be (0.0,0.0,0.0). The fit size is M x N x O data points
(M*N*O=number of data points in the interface), the (X,Y,Z) coordinates of the data are simply
the corresponding 3D array indices of the data array, starting from zero.

p_0 amplitude

p_1 center coordinate x
p_2 center coordinate y
p_3 center coordinate z
p_4 offset

p_5 phase

4.11. 3D Multichannel Spline function 24

https://github.com/gpufit/Gpuspline
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/spline_3d_multichannel.cuh
https://github.com/gpufit/Gpuspline
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/spline_3d_phase_multichannel.cuh

CHAPTER
FIVE

ESTIMATOR FUNCTIONS

5.1 Least squares estimator

The least squares estimator computes the weighted sum of the squared deviation between the data values and the
model at the positions of the data points. The ID for this estimator is LSE. It’s implemented in Ise.cuh.

Least squares estimation is a common method, and the standard Levenberg-Marquardt algorithm described by
Marquardt makes use of minimal least squares. The estimator is described as follows.

N-1

Xz(ﬁ) = Z (fn(ﬁ) - zn)2 * Wn

n=0
n The index of the data points (0,.., N — 1)
f_n The model function values at data position n
z_n Data values at data position n
vec{p} Fit model function parameters

w_n Weight values for data at position n

5.2 Maximum likelihood estimator for data subject to Poisson
statistics

The maximum likelihood estimator (MLE) for Poisson distributed noise is relatively simple to implement. In the
case of data with Poisson noise is provides a more precise estimate when compared to an LSE estimator. The ID
for this estimator is MLE. It’s implemented in mle.cuh.

The estimator is described as follows.

N-1

=23 (i) =) -2 3 zin (20)

z
n=0,2, %0 "

n The index of the data points (0,.., N — 1)

f_n The model function values at data position n
z_n Data values at data position n

vec{p} Actual model function parameters

Note that this estimator does not provide any means to weight the data values. Rather, noise in the data is assumed
to be purely Poissonian.

25

https://github.com/gpufit/Gpufit/blob/master/Gpufit/estimators/lse.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/estimators/mle.cuh

CHAPTER
SIX

EXAMPLES IN C++

Example programs, written in C++, are part of the Gpufit project and can be built and run through the project
environment. Here the example programs are described and the important steps in each program are highlighted.

Please note, that additionally, the C++ boost tests, and the Gpufit/Cpufit performance comparison test, may also be
of value as example code demonstrating the use of Gpufit. However, a detailed description of these tests programs
is not provided.

6.1 Simple example (minimal call to gpufit(Q))

This example demonstrates a simple, minimal program containing all of the required parameters for a call to the
Gpufit function. The example is contained in the file Simple_Example.cpp and it can be built and executed within
the project environment. Please note that it this code does not actually do anything other than make a single call
to gpufit().

In the first section of the code, the model ID is set, memory space for initial parameters and data values is allocated,
the fit tolerance is set, the maximum number of iterations is set, the estimator ID is set, and the parameters to fit
array is initialized. Note that in most applications, the data array will already exist and it will be unnecessary to
allocate additional space for data. In this example, the parameters to fit array is initialized to all ones, indicating
that all model parameters should be adjusted in the fit.

// number of fits, number of points per fit
size_t const n_fits = 10;
size_t const n_points_per_fit = 10;

// model ID and number of model parameters
int const model_id = GAUSS_1D;
size_t const n_model_parameters = 5;

// initial parameters
std: :vector< float > initial_parameters(n_fits * n_model_parameters);

// data
std: :vector< float > data(n_points_per_fit * n_fits);

// tolerance
float const tolerance = 0.001f;

// maximum number of iterations
int const max_number_iterations = 10;

// estimator ID
int const estimator_id = LSE;

// parameters to fit (all of them)
std::vector< int > parameters_to_fit(n_model_parameters, 1);

In the next section of code, sufficient memory is allocated for the fif results, output states, chi-square, and number
of iterations arrays.

26

https://github.com/gpufit/Gpufit/blob/master/Gpufit/examples/Simple_Example.cpp

Gpufit Documentation, Release 1.2.0

// output parameters

std: :vector< float > output_parameters(n_fits * n_model_parameters);
std: :vector< int > output_states(n_fits);

std: :vector< float > output_chi_square(n_fits);

std: :vector< int > output_number_iterations(n_fits);

Finally, a call to the C interface of Gpufit is made. In this example, the optional inputs weights and user_info are
not used. The program then checks the return status from Gpulfit. If an error occurred, the last error message is
obtained and an exception is thrown.

// call to gpufit (C interface)
int const status = gpufit
(
n_fits,
n_points_per_fit,
data.data(),
0,
model_id,
initial_parameters.data(Q),
tolerance,
max_number_iterations,
parameters_to_fit.data(Q),
estimator_id,
0,
0,
output_parameters.data(),
output_states.data(),
output_chi_square.data(),
output_number_iterations.data()

H

// check status
if (status != STATUS_OK)
{
throw std::runtime_error(gpufit_get_last_error());

}

In summary, the above example illustrates the basic details of the parameters which are passed to the gpufit ()
function, such as the size of the input and output variables, etc. This example could be adapted for real applications
by:

* choosing a model ID

* choosing an estimator ID

* setting the fit tolerance and maximum number of iterations

* using a data variable containing the data values to be fit

* providing initial parameters with suitable estimates of the true parameters
* processing the output data

In the following sections, examples are provided in which Gpufit is used to fit simulated datasets.

6.2 Example of 2D Gaussian fits

This example demonstrates the use of Gpufit to fit a dataset consisting of 2D Gaussian peaks. The example is
contained in the file Gauss_Fit_2D_Example.cpp and it can be built and executed within the project environment.
The optional inputs to gpufit(), weights and user_info, are not used.

This example features:
* Noisy data and random initial guesses for the fit parameters

* Use of the maximum likelihood estimator which is appropriate for data subject to Poisson noise

6.2. Example of 2D Gaussian fits 27

https://github.com/gpufit/Gpufit/blob/master/Gpufit/examples/Gauss_Fit_2D_Example.cpp

Gpufit Documentation, Release 1.2.0

In this example, a set of simulated data is generated, consisting of 10* individual Gaussian peaks, with a size of 30
x 30 points. Random noise is added to the data. The model function and the model parameters are described in
2D Gaussian function (cylindrical symmetry) (page 20).

In this example the true parameters used to generate the Gaussian data are defined in the following code block.

// true parameters
std: :vector< float > true_parameters{ 10.f, 14.5f, 14.5f, 3.f, 10.f}; // amplitude, center x/y positions,.
—width, offset

These parameters define a 2D Gaussian peak centered at the middle of the grid (position 14.5, 14.5), with a width
(standard deviation) of 3.0, an amplitude of 10 and a background of 10. Note that, since we are not providing the
independent variables (X values) in the call to Gpulfit, the X and Y coordinates of the first data point are assumed
to be 0.0, and increasing linearly from this point (i.e. 0,1, 2, ...).

The guesses for the initial parameters are drawn from the true parameters with a uniformly distributed deviation of
about 20%. The initial guesses for the center coordinates are chosen with a deviation relative to the width of the
Gaussian.

// initial parameters (randomized)
std: :vector< float > initial_parameters(n_fits * n_model_parameters);
for (size_t i = 0; i < n_fits; i++)
{
for (size_t j = 0; j < n_model_parameters; j++)
{
if G=1113==2
{
initial_parameters[i * n_model_parameters + j] = true_parameters[j] + true_parameters[3] * (-0.
—2f + 0.4f * uniform_dist(rng));
}
else
{
initial_parameters[i * n_model_parameters + j] = true_parameters[j] * (0.8f + 0.4f*uniform_
—dist(rng));
}
}

The 2D grid of X and Y values (each ranging from 0 to 29 with an increment of 1) is computed using a double for
loop.

// generate x and y values

std: :vector< float > x(n_points_per_fit);
std: :vector< float > y(n_points_per_fit);
for (size_t i = 0; i < size_x; i++)

{
for (size_t j = 0; j < size_x; j++) {
x[i * size_x + j] = static_cast<float>(j);
y[i * size_x + j] = static_cast<float>(i);
}
}

Next, a 2D Gaussian peak function (without noise) is calculated, once, using the true parameters.

void generate_gauss_2d(
std: :vector<float> const & x_coordinates,
std: :vector<float> const & y_coordinates,
std: :vector<float> const & gauss_params,
std: :vector<float> & output_values)

// Generates a Gaussian 2D function at a set of X and Y coordinates. The Gaussian is defined by
// an array of five parameters.

// x_coordinates: Vector of X coordinates.

// y_coordinates: Vector of Y coordinates.

// gauss_params: Vector of function parameters.

// output_values: Output vector containing the values of the Gaussian function at the
// corresponding X, Y coordinates.

(continues on next page)

6.2. Example of 2D Gaussian fits 28

Gpufit Documentation, Release 1.2.0

(continued from previous page)

// gauss_params[0]: Amplitude

// gauss_params[1]: Center X position

// guass_params[2]: Center Y position

// gauss_params[3]: Gaussian width (standard deviation)
// gauss_params[4]: Baseline offset

// This code assumes that x_coordinates.size == y_coordinates.size == output_values.size

for (size_t i = 0; i < x_coordinates.size(); i++)

{
float arg = -((x_coordinates[i] - gauss_params[1]) * (x_coordinates[i] - gauss_params[1])
+ (y_coordinates[i] - gauss_params[2]) * (y_coordinates[i] - gauss_params[2]))
/ (2.f * gauss_params[3] * gauss_params[3]);
output_values[i] = gauss_params[0] * exp(arg) + gauss_params[4];
}

The variable temp_gauss is used to store the values of the Gaussian peak. This variable is then used as a template
to generate a set of Gaussian peaks with random, Poisson-distributed noise.

// generate data with noise

std: :vector< float > temp_gauss(n_points_per_fit);

// compute the model function

generate_gauss_2d(x, y, true_parameters.begin(), temp_gauss);

std: :vector< float > data(n_fits * n_points_per_fit);
for (size_t i = 0; i < n_fits; i++)

{
// generate Poisson random numbers
for (size_t j = 0; j < n_points_per_fit; j++)
{
std: :poisson_distribution< int > poisson_dist(temp_gauss[j]);
data[i * n_points_per_fit + j] = static_cast<float>(poisson_dist(rng));
}
}

Thus, in this example, the data for each fit differs only in the random noise. This, and the randomized initial guesses
for each fit, result in each fit returning slightly different best-fit parameters.

Next, the model and estimator IDs are set, corresponding to the 2D Gaussian fit model function, and the MLE
estimator.

// estimator ID
int const estimator_id = MLE;

// model ID
int const model_id = GAUSS_2D;

Next, the gpufit function is called via the C Interface (page 9). Parameters weights, user_info and user_info_size
are set to 0, indicating that they are not used in this example.

// call to gpufit (C interface)
int const status = gpufit
(
n_fits,
n_points_per_fit,
data.data(),
09,
model_id,
initial_parameters.data(),
tolerance,
max_number_iterations,
parameters_to_fit.data(Q),
estimator_id,
09,

(continues on next page)

6.2. Example of 2D Gaussian fits 29

Gpufit Documentation, Release 1.2.0

(continued from previous page)

0,

output_parameters.data(),
output_states.data(),
output_chi_square.data(),
output_number_iterations.data()

DN

// check status
if (status != STATUS_OK)
{
throw std::runtime_error(gpufit_get_last_error());

3

After the fits are complete, the return value is checked to ensure that no error occurred.

6.2.1 Output statistics

The last part of this example obtains statistics describing the fit results, and testing whether the fits converged, etc.

The output_states variable contains a state code which indicates whether the fit converged, or if an error occured
(see the Gpufit API documentation, Description of output parameters (page 12), for details). In this example, a
histogram of all possible fit states is obtained by iterating over the state of each fit.

// get fit states
std: :vector< int > output_states_histogram(5, 0);
for (std::vector< int >::iterator it = output_states.begin(); it != output_states.end(); ++it)
{
output_states_histogram[*it]++;

}

In computing the mean and standard deviation of the results, only the converged fits are taken into account. The
following code contains an example of the calculation of the means of the output parameters, iterating over all fits
and all model parameters.

// compute mean of fitted parameters for converged fits
std: :vector< float > output_parameters_mean(n_model_parameters, 0);

for (size_t i = 0; i != n_fits; i++)
{
if (output_states[i] == STATE_CONVERGED)
{
for (size_t j = 0; j < n_model_parameters; j++)
{
output_parameters_mean[j] += output_parameters[i * n_model_parameters + j];
}
}

}
// normalize
for (size_t j = 0; j < n_model_parameters; j++)
{
output_parameters_mean[j] /= output_states_histogram[0];

3

In summary, the above example illustrates a simple call to gpufit () using a real dataset. When the fit is complete,
the fit results are obtained and the output states are checked. Additionally, this example calculates some basic
statistics describing the results. The code also illustrates how the input and output parameters are organized in
memory.

6.2. Example of 2D Gaussian fits 30

Gpufit Documentation, Release 1.2.0

6.3 Linear Regression Example

This example demonstrates the use of Gpufit to compute linear fits to a randomly generated dataset. The exam-
ple is contained in the file Linear_Regression_Example.cpp and it can be built and executed within the project
environment. This example illustrates how independent variables may be used in the fitting process, by taking
advantage of the user_info parameter. In this example, a set of 10* individual fits are calculated. Each simulated
dataset consists of 20 randomly generated data values. The X coordinates of the data points do not have a uniform
spacing, but increase non-linearly. The user information data is used to pass the X values to gpufit (). The fits
are unweighted, and the model function and model parameters are described in Linear regression (page 19).

For details of how user_info is used to store the values of the independent variable for this fit model function, see
the section of the Gpufit documentation describing the model functions, Fit Model functions (page 19).

This example features:
* Noisy data and random initial guesses for the parameters
» Unequally spaced X position values, passed to gpufit () using the user_info parameter.

The following code illustrates how the X positions of the data points are stored in the user_info variable, for this
model function. The user_info points at a vector of float values. Note, however, that the way in which user_info is
used by a model function may vary from function to function.

// custom x positions for the data points of every fit, stored in user_info
std: :vector< float > user_info(n_points_per_fit);
for (size_t i = 0; i < n_points_per_fit; i++)
{
user_info[i] = static_cast<float>(pow(2, i));
}

// size of user_info in bytes
size_t const user_info_size = n_points_per_fit * sizeof(float);

By providing the data coordinates for only one fit in user_info, the model function will use the same coordinates
for all fits in the dataset, as described in Fit Model functions (page 19).

In the next section, the initial parameters for each fit are set to random values, uniformly distributed around the
true parameter value.

// true parameters
std: :vector< float > true_parameters { 5, 2 }; // offset, slope

// initial parameters (randomized)
std: :vector< float > initial_parameters(n_fits * n_model_parameters);
for (size_t i = 0; i != n_fits; i++)
{
// random offset
initial_parameters[i * n_model_parameters + 0] = true_parameters[0] * (0.8f + 0.4f * uniform_
—dist(rng));
// random slope
initial_parameters[i * n_model_parameters + 1] = true_parameters[0] * (0.8f + 0.4f * uniform_
—dist(rng));
}

The data is then generated as the value of a linear function plus additive, normally distributed, random noise.

// generate data
std: :vector< float > data(n_points_per_fit * n_fits);
for (size_t i = 0; i != data.size(); i++)

{

size_t j i / n_points_per_fit; // the fit
size_t k = 1 % n_points_per_fit; // the position within a fit

float x = user_info[k];
float y = true_parameters[0] + x * true_parameters[1];
data[i] = y + normal_dist(rng);

6.3. Linear Regression Example 31

https://github.com/gpufit/Gpufit/blob/master/Gpufit/examples/Linear_Regression_Example.cpp

Gpufit Documentation, Release 1.2.0

In the following code, the model and estimator IDs for the fit are initialized.

// estimator ID
int const estimator_id = LSE;

// model ID
int const model_id = LINEAR_1D;

Finally, a call is made to gpufit () (C Interface (page 9)). The weights parameter is set to 0, indicating that the

fits are unweighted.

// call to gpufit (C interface)
int const status = gpufit
(

n_fits,
n_points_per_fit,
data.data(),
0,
model_id,
initial_parameters.data(),
tolerance,
max_number_iterations,
parameters_to_fit.data(Q),
estimator_id,
user_info_size,
reinterpret_cast< char * >(user_info.data()),
output_parameters.data(),
output_states.data(),
output_chi_square.data(),
output_number_iterations.data()

DN

After the fits have been executed and the return value is checked to ensure that no error occurred, statistics describing
the fit results are calculated and displayed, as in the previous example (see Output statistics (page 30)).

6.3. Linear Regression Example

32

CHAPTER
SEVEN

CUSTOMIZATION

This sections explains how to add custom fit model functions and custom fit estimators within the Gpufit library.
Functions calculating the estimator and model values are CUDA device functions that are defined in CUDA header
files using the C syntax. For each function and estimator there exists a separate file. Therefore, to add an additional
model or estimator a new CUDA header file containing the new model or estimator function must be created and
included in the library.

Please note, that in order to add a model function or estimator, it is necessary to rebuild the Gpufit library from
source. In future releases of Gpufit, it may be possible to include new fit functions or estimators at runtime.

7.1 Add a new fit model function

To add a new fit model, the model function itself as well as analytic expressions for its partial derivatives must to
be known. A function calculating the values of the model as well as a function calculating the values of the partial
derivatives of the model, with respect to the model parameters and possible grid coordinates, must be implemented.

Additionally, a new model ID must be defined and included in the list of available model IDs, and the number of
model parameters and dimensions must be specified as well.

Detailed step by step instructions for adding a model function are given below.

1. Define an additional model ID in file constants.h. When using the language bindings, the model ID must
also be added for Python (in gpufit.py), Matlab (in ModelID.m), Java (in Model.java).

2. Implement a CUDA device function within a newly created .cuh file in folder Gpufit/Gpufit/models according
to the following template.

__device__ void ... (// ... = function name
float const * parameters,
int const n_fits,
int const n_points,
float * value,
float * derivative,
int const point_index,
int const fit_index,
int const chunk_index,
char * user_info,
std::size_t const user_info_size)

{

L1111 valae S S

value[point_index] = ... ; // formula calculating fit model values

J11S /S derdivative /S S S

float * current_derivative = derivative + point_index;

current_derivative[0® * n_points] = ... ; // formula calculating derivative values with respect to.
—parameters[0]

current_derivative[l * n_points] = ... ; // formula calculating derivative values with respect to.
—parameters[1]

(continues on next page)

33

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

(continued from previous page)

This code can be used as a pattern, where the placeholders “...” must be replaced by user code which calculates
model function values and partial derivative values of the model function for a particular set of parameters. See
for example linear_1d.cuh.

3. Include the newly created .cuh file in models.cuh

4. Add a switch case in the CUDA device function calculate_model () in file models.cuh to allow calling
the newly added model function.

switch (model_id)
{
case GAUSS_1D:
calculate_gaussld(parameters, n_fits, n_points, value, derivative, point_index, fit_index, chunk_index,
< user_info, user_info_size);
break;

case ...: // model ID
// function name
(parameters, n_fits, n_points, value, derivative, point_index, fit_index, chunk_index, user_info,.,
—user_info_size);
break;

default:
break;

}

5. Add a switch case in function configure_model () in file models.cuh.

switch (model_id)

{
case GAUSS_1D: n_parameters = 4; n_dimensions = 1; break;
case ...: // model ID
n_parameters = ...; // number of model parameters
n_dimensions = ...; // number of model dimensions
break;
default: break;
}

6. After adding a new model function, if CMake is being used to configure the compiler, then CMake must be
run again. If not using CMake, the new model function file (the .cuh file) must be included in the project.

7. Re-build the Gpufit project.

7.2 Add a new fit estimator

To extend the Gpulfit library with additional estimators, three CUDA device functions must be defined and inte-
grated. The sections requiring modification are the functions which calculate the estimator function values, and
its gradient and hessian values. Also, a new estimator ID must be defined. Detailed step by step instructions for
adding an additional estimator is given below.

1. Define an additional estimator ID in constants.h When using the language bindings, the estimator ID must
be added also for Python (in gpufit.py), Matlab (in EstimatorID.m), Java (in Estimator.java).

2. Implement three functions within a newly created .cuh file in the folder Gpufit/Gpufit/estimators calculating
x? values and its gradient and hessian according to the following template.

7.2. Add a new fit estimator 34

https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/linear_1d.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/models.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/models.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/models/models.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

[117777 7/ Chi-square /111 /S
__device__ void ... (// ... = function name Chi-square
volatile float * chi_square,
int const point_index,
float const * data,
float const * value,
float const * weight,
int * state,
char * user_info,
std::size_t const user_info_size)
{

chi_square[point_index] = ... ; // formula calculating Chi-square summands

}

/10 gradient /110 1 S S S
__device__ void ... (// ... = function name gradient of Chi-square

volatile float * gradient,

int const point_index,

int const parameter_index,

float const * data,

float const * value,

float const * derivative,

float const * weight,

char * user_info,

std::size_t const user_info_size)

gradient[point_index] = ... ; // formula calculating summands of the gradient of Chi-square
// model derivates are stored in derivative[parameter_index]

}

/1SS hessian /110 S S S
__device__ void ... (// function name hessian

double * hessian,

int const point_index,

int const parameter_index_i,

int const parameter_index_j,

float const * data,

float const * value,

float const * derivative,

float const * weight,

char * user_info,

std::size_t const user_info_size)

{
“hessian += ... ; // formula calculating summands of the hessian of Chi-square
}
This code can be used as a pattern, where the placeholders “...” must be replaced by user code which calculates

the estimator and the gradient and hessian values of the estimator given. For a concrete example, see Ise.cuh.

3. Include the newly created .cuh file in estimators.cuh.

#include "....cuh" // filename

4. Add a switch case in three CUDA device functions in the file estimators.cuh.

4a. Calculation of Chi-square:

switch (estimator_id)
{
case LSE:
calculate_chi_square_lse(chi_square, point_index, data, value, weight, state,..
—user_info, user_info_size);
break;

case ...: // estimator ID
// function name Chi-square
(chi_square, point_index, data, value, weight, state, user_info, user_info_
—ssize);
break;

(continues on next page)

7.2. Add a new fit estimator 35

https://github.com/gpufit/Gpufit/blob/master/Gpufit/estimators/lse.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/estimators/estimators.cuh
https://github.com/gpufit/Gpufit/blob/master/Gpufit/estimators/estimators.cuh

Gpufit Documentation, Release 1.2.0

(continued from previous page)

default:
break;

}

4b. Calculation of the gradients of Chi-square:

switch (estimator_id)
{
case LSE:
calculate_gradient_lse(gradient, point_index, parameter_index, data, value,..
—derivative, weight, user_info, user_info_size);
break;

case ...: // estimator ID
// function name gradient
(gradient, point_index, parameter_index, data, value, derivative, weight,.,
—user_info, user_info_size);
break;

default:
break;

}

4c. Calculation of the Hessian:

switch (estimator_id)
{
case LSE:
calculate_hessian_lse
(hessian, point_index, parameter_index_i, parameter_index_j, data, value,.,
—derivative, weight, user_info,user_info_size);
break;

case ...: // estimator ID
// function name hessian
(hessian, point_index, parameter_index_i, parameter_index_j, data, value,.,
—»derivative, weight, user_info, user_info_size);
break;

default:
break;
}

5. After adding a new estimator, if CMake is being used to configure the compiler, then CMake must be run
again. If not using CMake, the new estimator file (the .cuh file) must be included in the project.

6. Re-build the Gpulfit project.

7.3 Future releases

A current disadvantage of the Gpufit library, when compared with established CPU-based curve fitting packages, is
that in order to add or modify a fit model function or a fit estimator, the library must be recompiled. We anticipate
that this limitation can be overcome in future releases of the library, by employing run-time compilation of the
CUDA code.

7.3. Future releases 36

CHAPTER
EIGHT

EXTERNAL BINDINGS

This sections describes the Gpufit bindings to other programming languages. The bindings (to Python, Matlab or
Java) aim to emulate the C Interface (page 9) as closely as possible.

Most high level languages feature multidimensional numeric arrays. In the bindings implemented for Matlab and
Python, we adopt the convention that the input data should be organized as a 2D array, with one dimension cor-
responding to the number of data points per fit, and the other corresponding to the number of fits. Internally, in
memory, these arrays should always be ordered such that the data values for each fit are kept together. In Matlab,
for example, this means storing the data in an array with dimensions [number_points_per_fit, number_fits]. In this
manner, the data in memory is ordered in the same way that is expected by the Gpufit C interface, and there is no
need to copy or otherwise re-organize the data before passing it to the GPU. The same convention is used for the
weights, the initial model parameters, and the output parameters.

In Java we pre-allocate one dimensional FloatBuffers or IntBuffers for the data and the fit results. The user is
responsible for copying data into these buffers.

Unlike the C interface, the external bindings do not require the number of fits and the number of data points per fit
to be specified explicitly. Instead, these numbers are inferred from the dimensions of the 2D input arrays.

8.1 Optional parameters with default values

The external bindings make some input parameters optional. The optional parameters are shown here. They are
kept the same for all bindings.

tolerance default value le-4

max_n_iterations default value 25 iterations

estimator_id the default estimator is LSE as defined in constants.h
parameters_to_fit by default all parameters are fit

For instructions on how to specify these parameters explicitly, see the sections below.

8.2 Python

The Gpufit binding for Python is a project named pyGpufit. This project contains a Python package named pygpufit,
which contains a module gpufit, and this module implements a method called fit. Calling this method is equivalent
to calling the C interface function gpufit () of the Gpufit library. The package expects the input data to be stored
as NumPy array. NumPy follows row-major order by default.

37

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

8.2.1 Installation

Wheel files for Python 2.X and 3.X on Windows 32/64 bit are included in the binary package. NumPy is required.

Install the wheel file with.

’pip install --no-index --find-links=LocalPathToWheelFile pyGpufit

8.2.2 Python Interface
fit

The signature of the fit method (equivalent to calling the C interface function gpufit()) is

def fit(data, weights, model_id:ModelID, initial_parameters, tolerance:float=None, max_number_
—»iterations:int=None, parameters_to_fit=None, estimator_id:EstimatorID=None, user_info=None):

Optional parameters are passed in as None. The numbers of points, fits and parameters is deduced from the di-
mensions of the input data and initial parameters arrays.

Input parameters
data Data 2D NumPy array of shape (number_fits, number_points) and data type np.float32

weights Weights 2D NumPy array of shape (number_fits, number_points) and data type np.float32
g g y y p p ype np
(same as data)

special None indicates that no weights are available
tolerance Fit tolerance

type float

special If None, the default value will be used.
max_number_iterations Maximal number of iterations

type int

special If None, the default value will be used.
estimator_id estimator ID

type EstimatorID which is an Enum in the same module and defined analogously to
constants.h.

special If None, the default value is used.
model_id model ID

type ModellD which is an Enum in the same module and defined analogously to con-
stants.h.

initial_parameters Initial parameters 2D NumPy array of shape (number_fits, number_parameter)
array data type np.float32

parameters_to_fit parameters to fit 1D NumPy array of length number_parameter A zero indicates
that this parameter should not be fitted, everything else means it should be fitted.

array data type np.int32
special If None, the default value is used.

user_info user info 1D NumPy array of arbitrary type. The length in bytes is deduced automatically.
special If None, no user_info is assumed.

Output parameters

8.2. Python 38

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h
https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h
https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

parameters Fitted parameters for each fit 2D NumPy array of shape (number_fits, num-
ber_parameter) and data type np.float32

states Fit result states for each fit ID NumPy array of length number_parameter of data type np.int32
As defined in constants.h:

chi_squares y? values for each fit 1D NumPy array of length number_parameter of data type
np.float32

n_iterations Number of iterations done for each fit 1D NumPy array of length number_parameter of
data type np.int32

time Execution time of call to fit In seconds.

Errors are raised if checks on parameters fail or if the execution of fit failed.

fit_constrained
The fit_constrained method is very similar to the £it method with the additional possibility to specify param-
eter constraints.

The signature of the fit_constrained method (equivalent to calling the C interface function
gpufit_constrained())is

def fit_constrained(data, weights, model_id:ModelID, initial_parameters, constraints=None, constraint_
—types=None, tolerance:float=None, max_number_iterations:int=None, parameters_to_fit=None, estimator_
—id:EstimatorID=None, user_info=None):

Constraint input parameters

constraints Constraint bound intervals for every parameter and every fit. 2D NumPy array of shape
(number_fits, 2*number_parameter) and data type np.float32

contraint_types Constraint types for every parameter 1D NumPy array of length number_parameter
Valid values are defined in gf.ConstraintType

get_last_error

The signature of the get_last_error method (equivalent to calling the C interface function gpufit_get last_error) is

def get_last_error():

Returns a string representing the error message of the last occurred error.

cuda_available

The signature of the cuda_available method (equivalent to calling the C interface function gpufit_cuda_available)
is

def cuda_available():

Returns True if CUDA is available and False otherwise.

8.2. Python 39

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

get_cuda_version

The signature of the get cuda_version method (equivalent to calling the C interface function gpu-
fit_get_cuda_version) is

def get_cuda_version():

Output parameters
runtime version Tuple of (Major version, Minor version)
driver version Tuple of (Major version, Minor version)

An error is raised if the execution failed (i.e. because CUDA is not available).

8.2.3 Python Examples

2D Gaussian peak example

An example can be found at Python Gauss2D example. It is equivalent to Example of 2D Gaussian fits (page 27).

The essential imports are:

import numpy as np
import pygpufit.gpufit as gf

First we test for availability of CUDA as well as CUDA driver and runtime versions.

cuda available checks
print('CUDA available: '.format(gf.cuda_available()))
print('CUDA versions runtime: , driver: '.format(*gf.get_cuda_version()))

The true parameters describing an example 2D Gaussian peak functions are:

true parameters
true_parameters = np.array((10, 5.5, 5.5, 3, 10), dtype=np.float32)

A 2D grid of x and y positions can conveniently be generated using the np.meshgrid function:

generate x and y values

g = np.arange(size_x)

yi, xi = np.meshgrid(g, g, indexing="ij")
xi = xi.astype(np.float32)

yi = yi.astype(np.float32)

Using these positions and the true parameter values a model function can be calculated as

def generate_gauss_2d(p, xi, yi):
Generates a 2D Gaussian peak.
http://gpufit.readthedocs.io/en/latest/api.html#gauss-2d

:param p: Parameters (amplitude, x,y center position, width, offset)
:param xi: x positions

:param yi: y positions

:return: The Gaussian 2D peak.

i

arg = -(np.square(xi - p[1]) + np.square(yi - p[2]1)) / (2*p[3]1*p[3])
y = p[0] * np.exp(arg) + p[4]

return y

The model function can be repeated and noise can be added using the np.tile and np.random.poisson functions.

8.2. Python 40

https://github.com/gpufit/Gpufit/blob/master/Gpufit/python/examples/gauss2d.py

Gpufit Documentation, Release 1.2.0

generate data

data = generate_gauss_2d(true_parameters, xi, yi)
data = np.reshape(data, (1, number_points))

data = np.tile(data, (number_fits, 1))

add Poisson noise
data = np.random.poisson(data)
data = data.astype(np.float32)

The model and estimator IDs can be set as

estimator ID
estimator_id = gf.EstimatorID.MLE

model ID
model_id = gf.ModelID.GAUSS_2D

When all input parameters are set we can call the C interface of Gpufit.

run Gpufit
parameters, states, chi_squares, number_iterations, execution_time = gf.fit(data, None, model_id, initial_
—parameters, tolerance, max_number_iterations, None, estimator_id, None)

And finally statistics about the results of the fits can be displayed where the mean and standard deviation of the
fitted parameters are limited to those fits that converged.

print fit results

get fit states

converged = states == 0

number_converged = np.sum(converged)

print('ratio converged %' . format (number_converged / number_fits * 100))
print('ratio max it. exceeded %' .format(np.sum(states == 1) / number_fits * 100))
print('ratio singular hessian %' . format(np.sum(states == 2) / number_fits * 100))
print('ratio neg curvature MLE %' .format(np.sum(states == 3) / number_fits * 100))
print('ratio gpu not read %' . format(np.sum(states == 4) / number_fits * 100))

mean, std of fitted parameters

converged_parameters = parameters[converged, :]
converged_parameters_mean = np.mean(converged_parameters, axis=0)
converged_parameters_std = np.std(converged_parameters, axis=0)

for i in range(number_parameters):
print('p true mean std '.format(i, true_parameters[i], converged_parameters_

—mean[i], converged_parameters_std[i]))

print summary

print('model ID: ' . format (model_id))

print('number of fits: ' format (number_£fits))

print('fit size: X ' format(size_x, size_x))

print('mean chi_square: ' . format (np.mean(chi_squares[converged])))
print('iterations: ' . format (np.mean(number_iterations[converged])))
print('time: s'.format(execution_time))

2D Gaussian peak constrained fit example

An example for a constrained fit can be found at Python Gauss2D constrained fit example. It differs from the
previous example only in that constraints are specified additionally (as 2D array of lower and upper bounds on
parameters for every fit) as well as constraint types (for all parameters including fixed parameters) that can take
a value of ConstraintType (FREE, LOWER, UPPER or LOWER_UPPER) in order to either do not enforce the
constraints for a parameter or enforce them only at the lower or upper or both bounds.

The following code block demonstrates how the sigma of a 2D Gaussian peak can be constrained to the interval
[2.9, 3.1] and the background and ampltiude to non-negative values.

8.2. Python 41

https://github.com/gpufit/Gpufit/blob/master/Gpufit/python/examples/gauss2d_constrained.py

Gpufit Documentation, Release 1.2.0

set constraints

constraints = np.zeros((number_fits, 2*number_parameters), dtype=np.float32)

constraints[:, 6] = 2.9

constraints[:, 7] = 3.1

constraint_types = np.array([gf.ConstraintType.LOWER, gf.ConstraintType.FREE, gf.ConstraintType.FREE, gf.
—ConstraintType.LOWER_UPPER, gf.ConstraintType.LOWER], dtype=np.int32)

run constrained Gpufit
parameters, states, chi_squares, number_iterations, execution_time = gf.fit_constrained(data, None, model_
—id,

initial_parameters,..
<>constraints, constraint_types,

tolerance, max_number_
—»iterations, None,

estimator_id, None)

8.3 Matlab

The Matlab binding for Gpufit is a Matlab script (gpufit.m). This script checks the input data, sets default param-
eters, and calls the C interface of the Gpufit library, via a compiled .mex file.

Please note, that before using the Matlab binding, the path to gpufit.m must be added to the Matlab path.

If other GPU-based computations are to be performed with Matlab in the same session, please use the Matlab GPU
computing functionality first (for example with a call to gpuDevice or gpuArray) before calling the Gpufit Matlab
binding. If this is not done, Matlab will throw an error (Error using gpuArray An unexpected error occurred during
CUDA execution. The CUDA error was: cannot set while device is active in this process).

8.3.1 Matlab Interface

gpufit

Optional parameters are passed in as empty matrices ([]). The numbers of points, fits and parameters is deduced
from the dimensions of the input data and initial parameters matrices.

The signature of the gpufit function is

function [parameters, states, chi_squares, n_iterations, time] = gpufit(data, weights, model_id, initial_
< parameters, tolerance, max_n_iterations, parameters_to_fit, estimator_id, user_info)

Input parameters

data Data 2D matrix of size [number_points, number_fits] and data type single

weights Weights 2D matrix of size [number_points, number_fits] and data type single (same as data)
special None indicates that no weights are available

tolerance Fit tolerance
type single
special If empty ([]), the default value will be used.

max_number_iterations Maximal number of iterations Will be converted to int32 if necessary
special If empty ([]), the default value will be used.

estimator_id estimator ID
type EstimatorID which is defined in EstimatorID.m analogously to constants.h.
special If empty ([]), the default value is used.

model_id model ID

8.3. Matlab 42

https://github.com/gpufit/Gpufit/blob/master/Gpufit/matlab/gpufit.m
https://github.com/gpufit/Gpufit/blob/master/Gpufit/matlab/gpufit.m
https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

type ModellD which is defined in ModellD.m analogously to constants.h.
initial_parameters Initial parameters 2D matrix of size: [number_parameter, number_fits]
type single

parameters_to_fit parameters to fit vector of length number_parameter, will be converted to int32
if necessary A zero indicates that this parameter should not be fitted, everything else means it
should be fitted.

special If empty ([]), the default value is used.

user_info user info vector of suitable type (correct type is not checked and depends on the chosen fit
model function or estimator). The length of user_info in bytes is determined automatically.

Output parameters

parameters Fitted parameters for each fit 2D matrix of size: [number_parameter, number_fits] of
data type single

states Fit result states for each fit vector of length number_parameter of data type int32 As defined in
constants.h:

chi_squares y? values for each fit vector of length number_parameter of data type single

n_iterations Number of iterations done for each fit vector of length number_parameter of data type
int32

time Execution time of call to gpufit In seconds.

Errors are raised if checks on parameters fail or if the execution of gpulfit fails.

gpufit_constrained

The gpufit_constrained function is very similar to the gpufit function with the additional possibility to spec-
ify parameter constraints.

The signature of the gpufit_constrained function is

function [parameters, states, chi_squares, n_iterations, time] = gpufit_constrained(data, weights, model_
—id, initial_parameters, constraints, constraint_types, tolerance, max_n_iterations, parameters_to_fit,..
—estimator_id, user_info)

Constraint input parameters

constraints Constraint bound intervals for every parameter and every fit 2D matrix of size [2*num-
ber_parameter, number_{its] of data type single

contraint_types Constraint types for every parameter Vector of length number_parameter, will be
converted to int32 if necessary. Valid values are defined in ConstraintType.m.

gpufit_cuda_available

The signature of the gputfit_cuda_available method (equivalent to calling the C interface function gpu-
fit_cuda_available) is

function r = gpufit_cuda_available():

Returns True if CUDA is available and False otherwise.

8.3. Matlab 43

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h
https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

8.3.2 Matlab Examples

Simple example

The most simple example is the Matlab simple example. It is equivalent to Simple example (minimal call to gpufit())
(page 26) and additionally relies on default values for optional arguments.

2D Gaussian peak example

An example can be found at Matlab Gauss2D example. It is equivalent to Example of 2D Gaussian fits (page 27).

The true parameters describing an example 2D Gaussian peak functions are:

% true parameters
true_parameters = single([10, 5.5, 5.5, 3, 10]);

A 2D grid of x and y positions can conveniently be generated using the ndgrid function:

% generate x and y values
g = single(® : size_x - 1);
[x, y] = ndgrid(g, 9J;

Using these positions and the true parameter values a model function can be calculated as

function g = gaussian_2d(x, y, p)

% Generates a 2D Gaussian peak.

% http://gpufit.readthedocs.io/en/latest/api.html#gauss-2d

%

% x,y - x and y grid position values

% p - parameters (amplitude, x,y center position, width, offset)

g =p(1) ¥ exp(-((x - p(2)).*2 + (y - p(3)).72) / (2 * p(4)*2)) + p(5);

end

The model function can be repeated and noise can be added using the repmat and poissrnd functions.

% generate data with Poisson noise

data = gaussian_2d(x, y, true_parameters);
data = repmat(data(:), [1, number_fits]);
data = poissrnd(data);

The model and estimator IDs can be set as

% estimator id
estimator_id = EstimatorID.MLE;

% model ID
model_id = ModelID.GAUSS_2D;

When all input parameters are set we can call the C interface of the Gpufit library.

%% run Gpufit
[parameters, states, chi_squares, n_iterations, time] = gpufit(data, [], model_id, initial_parameters,..,
—tolerance, max_n_iterations, [], estimator_id, []);

And finally statistics about the results of the fits can be displayed where the mean and standard deviation of the
fitted parameters are limited to those fits that converged.

%% displaying results

% get fit states

converged = states == 0;

number_converged = sum(converged) ;

fprintf(' ratio converged %6.2f %%\n', number_converged / number_fits * 100);

(continues on next page)

8.3. Matlab 44

https://github.com/gpufit/Gpufit/blob/master/Gpufit/matlab/examples/simple.m
https://github.com/gpufit/Gpufit/blob/master/Gpufit/matlab/examples/gauss2d.m

Gpufit Documentation, Release 1.2.0

(continued from previous page)

fprintf(' ratio max it. exceeded %6.2f %%\n', sum(states == 1) / number_fits * 100);
fprintf(' ratio singular hessian %6.2f %%\n', sum(states == 2) / number_fits * 100);
fprintf(' ratio neg curvature MLE %6.2f %%\n', sum(states == 3) / number_fits * 100);
fprintf(' ratio gpu not read %6.2f %%\n', sum(states == 4) / number_fits * 100);

% mean and std of fitted parameters
converged_parameters = parameters(:, converged);
converged_parameters_mean = mean(converged_parameters, 2);
converged_parameters_std = std(converged_parameters, [], 2);
for i = 1 : number_parameters
fprintf(' p%d true %6.2f mean %6.2f std %6.2f\n', i, true_parameters(i), converged_parameters_mean(i),..
—converged_parameters_std(i));
end

% print summary

fprintf('model ID: %d\n', model_id);

fprintf('number of fits: %d\n', number_fits);

fprintf('fit size: %d x %d\n', size_x, size_x);

fprintf('mean chi-square: %6.2f\n', mean(chi_squares(converged)));
fprintf('iterations: %6.2f\n', mean(n_iterations(converged)));
fprintf('time: %6.2f s\n', time);

2D Gaussian peak constrained fit example

An example for a constrained fit can be found at Matlab Gauss2D constrained fit example. It differs from the
previous example only in that constraints are specified additionally (as 2D array of lower and upper bounds on
parameters for every fit) as well as constraint types (for all parameters including fixed parameters) that can take
a value of ConstraintType (FREE, LOWER, UPPER or LOWER_UPPER) in order to either do not enforce the
constraints for a parameter or enforce them only at the lower or upper or both bounds.

The following code block demonstrates how the sigma of a 2D Gaussian peak can be constrained to the interval
[2.9, 3.1] and the background and amplitude to non-negative values.

%% set constraints

constraints = zeros([2*number_parameters, number_fits], 'single');

constraints(7, :) = 2.9;

constraints(8, :) = 3.1;

constraint_types = int32([ConstraintType.LOWER, ConstraintType.FREE, ConstraintType.FREE, ConstraintType.
- LOWER_UPPER, ConstraintType.LOWER]);

%% run constrained Gpufit
[parameters, states, chi_squares, n_iterations, time] = gpufit_constrained(data, [],

model_id, initial_parameters, constraints, constraint_types, tolerance, max_n_iterations, [],..
—estimator_id, []);

8.4 Java

The Gpufit binding for Java consists of a small adapter C library named GpufitJNI and a Gpulfit jar archive con-
taining a com.github.gpufit package. In these the class Gpufit has static methods largely equivalent to calling the
C interface function gpufit () of the Gpulfit library. The fit method expects the input to be given as a FitModel
instance, which among other things specifies the model and the estimator as enums. The results are returned as a
FitResult instance.

8.4. Java 45

https://github.com/gpufit/Gpufit/blob/master/Gpufit/matlab/examples/gauss2d_constrained.m

Gpufit Documentation, Release 1.2.0

8.4.1 Installation
Build the Gpufit library and the GpufitJNI library from source as documented in /nstallation and Testing (page 3).

Make sure both libraries are in the Java library path, for example by using the -Djava.library.path comman line
switch for the VM.

Build the Gpufit.jar from the sources using Gradle on Gpufit/java/gpufit/build.gradle. Make sure this jar is in the
Java class path of your application, e.g. by adding it as a dependency to your project

8.4.2 Java Interface

For a more complete description, see the Javadoc output of the Gpufit Java binding project.

Gpufit.fit

The signature of the fit method (calls the C interface function gpufit(Q)) is

public static FitResult fit(FitModel fitModel, FitResult fitResult)

Input parameters are given as a FitModel, output parameters are stored in a FitResult. A FitResult can be re-used if
the number of fits and the number of parameters of the model didn’t change. It must then also be given as second
parameter.

Input of the fit - Filling the FitModel

public FitModel(int numberFits, int numberPoints, boolean withWeights, Model model, Float tolerance,..
—Integer maxNumberIterations, Boolean[] parametersToFit, Estimator estimator, int userInfoSize)

numberFits Number of fits
numberPoints Number of data points per fit
widthWeights If true, a buffer for giving weights is pre-allocated, otherwise not

model An enum describing the model. See class Model for more information. Naming and id is
equivalent to the C code.

tolerance Fit tolerance
special If null, the default value will be used.
maxNumberlIterations Maximal number of iterations
special If null, the default value will be used.
parametersToFit Boolean array indicating which parameters should be fitted
special If null, the default value will be used.

estimator Enum describing the estimator function. See class Estimator for more information. Nam-
ing and id is equivalent to the C code.

special If None, the default value is used.
userInfoSize The size of the user info (in bytes).
special Must be positive, otherwise the buffer for user info is not pre-allocated.

Afterwards the buffers for data, weights (if desired), initial parameters and user info (if desired) must be filled with
the appropriate content. The internal layout is the same as in the C part of Gpufit, i.e. the data represents an 1D
number array of length of number fits times number data points per fit with an order of data points followed one
after another for all fits. In this batch. The initial parameters are number fits times number of parameters in the
model with the parameters for each fit changing fastest and the number of fits slowest.

Fit output - The FitResult

8.4. Java 46

Gpufit Documentation, Release 1.2.0

Memory for the fit output is either created automatically or a previous instance of FitResult can be reused to avoid
recreation.

public class FitResult {

public final FloatBuffer parameters;
public final IntBuffer states;

public final FloatBuffer chiSquares;
public final IntBuffer numberIterations;
public float fitDuration;

parameters Fitted parameters for each fit

states Fit result states for each fit As defined in constants.h:
chi_squares y? values for each fit

n_iterations Number of iterations done for each fit

time Execution time of call to fit In seconds.

Errors are raised if checks on parameters fail or if the execution of fit failed.

Gpufit.getLastError

The signature of the get_last_error method (equivalent to calling the C interface function gpufit_get last_error) is

public static native String getLastError()

Returns a string representing the error message of the last occurred error.

Gpufit.isCudaAvailable

The signature of the cuda_available method (equivalent to calling the C interface function gpufit_cuda_available)

is

public static native boolean isCudaAvailable()

Returns True if CUDA is available and False otherwise.

get_cuda_version

The signature of the get_cuda_version method (equivalent to calling the C interface function gpu-
fit_get_cuda_version) is

public static CudaVersion getCudaVersion()

The output is a CudaVersion instance with two simple member variables.
runtime version String of “Major version.Minor version”
driver version String of “Major version.Minor version”

An error is raised if the execution failed (i.e. because CUDA is not available).

8.4. Java 47

https://github.com/gpufit/Gpufit/blob/master/Gpufit/constants.h

Gpufit Documentation, Release 1.2.0

8.4.3 Java Example

2D Gaussian peak example

An example can be found at Java Gauss2D example. It is equivalent to Example of 2D Gaussian fits (page 27).

First we test for availability of CUDA as well as CUDA driver and runtime versions.

// print general CUDA information

System.out.println(String.format ("CUDA available: %b", Gpufit.isCudaAvailable()));

CudaVersion cudaVersion = Gpufit.getCudaVersion();

System.out.println(String. format ("CUDA versions runtime: %s, driver: %s", cudaVersion.runtime, cudaVersion.
—driver));

The model and estimator IDs can be set as

Model model = Model.GAUSS_2D;
Estimator estimator = Estimator.MLE;

The true parameters describing an example 2D Gaussian peak functions are:

// true parameters (order: amplitude, center-x, center-y, width, offset)
float[] trueParameters = new float[]{10, 5.5f, 5.5f, 3, 10};

A 2D grid of x and y positions can conveniently be generated:

// generate x and y values
float[] xi = new float[numberPoints];
float[] yi = new float[numberPoints];
for (int i = 0; i < sizeX; i++) {
for (int j = 0; j < sizeX; j++) {
xi[i * sizeX + j] = i;
yili * sizeX + j] = j;

Using these positions and the true parameter values a model function can be calculated as

Vaidd
* Computes a 2D Gaussian peak given x and y values and parameters.

* See also: http://gpufit.readthedocs.io/en/latest/api.html#gauss-2d

* @aram p Parameter array

* @aram x x values array

* @aram y y values array

* @return Model values array

;‘:/
private static float[] generateGauss2D(float[] p, float[] x, float[] y) {
// checks
assert(x.length == y.length);
assert(p.length == 5);
// calculate data
float[] data = new float[x.length];
for (int i = 0; i < x.length; i++) {
float arg = -((x[i] - p[11) * (x[i] - p[1]) + (y[i]l - p[2]) * (y[il - p[21D)) / (2 * p[3]1 * p[31);
data[i] = p[0] * (float)Math.exp(arg) + pl[4];
}
return data;
}

The model function can be repeated and Poisson noise can be added.

// generate data

float[] gauss2D = generateGauss2D(trueParameters, xi, yi);
float[] data = new float[numberFits * numberPoints];

for (int i = 0; 1 < numberFits; i++) {

(continues on next page)

8.4. Java 48

https://github.com/gpufit/Gpufit/blob/master/Gpufit/java/gpufit/src/test/java/com/github/gpufit/examples/Gauss2DExample.java

Gpufit Documentation, Release 1.2.0

(continued from previous page)

System.arraycopy(gauss2D, 0, data, i * numberPoints, numberPoints);

}

// add Poisson noise
for (int i = 0; i < numberFits * numberPoints; i++) {
data[i] = nextPoisson(datal[i], rand);

}

A FitModel containing all the input data including copying the data values from an array to a Java buffer can be
done via

// assemble FitModel
FitModel fitModel = new FitModel (numberFits, numberPoints, false, model, tolerance, maxNumberIterations,.,
—null, estimator, 0);

// fill data and initial parameters in the fit model
fitModel.data.clear(Q);

fitModel.data.put(data);
fitModel.initialParameters.clear();
fitModel.initialParameters.put(initialParameters);

When all input parameters are set we can call the C interface of Gpufit.

// fun Gpufit
FitResult fitResult = Gpufit.fit(fitModel);

And finally statistics about the results of the fits can be displayed where the mean and standard deviation of the
fitted parameters are limited to those fits that converged.

// count FitState outcomes and get a list of those who converged
boolean[] converged = new boolean[numberFits];
int numberConverged = 0, numberMaxIterationExceeded = 0, numberSingularHessian = 0,..
—numberNegativeCurvatureMLE = 0;
for (int i = 0; 1 < numberFits; i++) {
FitState fitState = FitState.fromID(fitResult.states.get(i));
converged[i] = fitState.equals(FitState.CONVERGED);
switch (fitState) {
case CONVERGED:
numberConverged++;
break;
case MAX_ITERATIONS:
numberMaxIterationExceeded++;
break;
case SINGULAR_HESSIAN:
numberSingularHessian++;
break;
case NEG_CURVATURE_MLE:
numberNegativeCurvatureMLE++;

3

// get mean and std of converged parameters
float [] convergedParameterMean = new float[]{0, 0, 0, 0, 03};
float [] convergedParameterStd = new float[]{0®, O, 0, 0, 0};
for (int i = 0; i < numberFits; i++) {
for (int j = 0; j < model.numberParameters; j++) {
if (converged[i]) {
convergedParameterMean[j] += fitResult.parameters.get(i * model.numberParameters + j);
}
}
}
for (int i = 0; i < model.numberParameters; i++) {
convergedParameterMean[i] /= numberConverged;
}
for (int i = 0; i < numberFits; i++) {
for (int j = 0; j < model.numberParameters; j++) {
if (converged[i]) {
float dev = fitResult.parameters.get(i * model.numberParameters + j) -.
<—->convergedParameterMean[j];

(continues on next page)

8.4. Java 49

Gpufit Documentation, Release 1.2.0

(continued from previous page)

convergedParameterStd[j] += dev * dev;

}
}
for (int i = 0; i < model.numberParameters; i++) {
convergedParameterStd[i] = (float)Math.sqrt(convergedParameterStd[i] / numberConverged);

}

// print fit results

System.out.println("*Gpufit*");

System.out.println(String.format("Model: %s", model.name()));

System.out.println(String. format ("Number of fits: %d", numberFits));

System.out.println(String.format("Fit size: %d x %d", sizeX, sizeX));

System.out.println(String. format ("Mean Chi?: %.2f", meanFloatBuffer(fitResult.chiSquares, converged)));
System.out.println(String.format("Mean number iterations: %.2f", meanIntBuffer(fitResult.numberIterations,
< converged)));

System.out.println(String.format("Time: %.2fs", fitResult.fitDuration));
System.out.println(String.format("Ratio converged: %.2f %%", (float) numberConverged / numberFits * 100));
System.out.println(String.format("Ratio max it. exceeded: %.2f %%", (float) numberMaxIterationExceeded /.
—numberFits * 100));

System.out.println(String.format("Ratio singular Hessian: %.2f %%", (float) numberSingularHessian /.,
—numberFits * 100));

System.out.println(String.format("Ratio neg. curvature MLE: %.2f %%", (float) numberNegativeCurvatureMLE /..
—numberFits * 100));

System.out.println("\nParameters of 2D Gaussian peak");
for (int i = 0; i < model.numberParameters; i++) {

System.out.println(String. format("parameter %d, true: %.2f, mean %.2f, std: %.2f", i,.
—strueParameters[i], convergedParameterMean[i], convergedParameterStd[i]));

3

8.4. Java 50

CHAPTER
NINE

APPENDIX

9.1 Levenberg-Marquardt algorithm

A flowchart of the implementation of the Levenberg-Marquardt algorithm is given in Fig. 9.1.

9.2 Performance comparison to other GPU benchmarks

Using the bundled application (initial release created with CUDA runtime 8.0) to estimate the fitting speed per
second of 10 million fits for various CUDA capable graphics cards of various architectures (on different computers
with different versions of graphics drivers) we can compare to the results of Passmark G3D. By and large, the
results seem to correlate, i.e. a high Passmark G3D score also relates to a high Gpufit fitting speed.

51

Gpufit Documentation, Release 1.2.0

allocate
memory

L

initialize fit

y

copy data to
GPU memaory

v

calculate calculate
model and | model and
derivatives derivatives

v Y

input data
(one chunk
of fits)

calculate ¥ calculate ¥

v

calculate calculate

VY Y S X decreased?
L 2 * no

calculate calculate
Hessian Hessian

y

o | setstep
width

solve
equation
system

v

update fit
parameters

A 4

-
»
1.
»

2
store new X

—] andfit |- decrease) f——yes< X decreased?
parameters

no yes

reset X* & fit I *
——1parameters tof=———-=—= increase A
prev. values read results
from GPU

next iteration

next chunk of fits

end

Fig. 9.1: Levenberg-Marquardt algorithm flow as implemented in the Gpufit library.

9.2. Performance comparison to other GPU benchmarks 52

Gpufit Documentation, Release 1.2.0

«10° GPUfit vs Passmark G3D
GTX 1070
® architecture 2
2L ® architecture 3 % 980 Ti
= ® architecture 5
S architecture 6
8 regression
7
g 1.5
n
o
&)
c
g 1f
G
=
o
a
S el
o 0.5
Q
oQuadro K4000
GTX 670
oGT 640 ®
0 1 1 1 1 Il]
0 2000 4000 6000 8000 10000 12000

Passmark G3D score

Fig. 9.2: Performance of Gpufit vs Passmark G3D

9.2. Performance comparison to other GPU benchmarks 53

CHAPTER
TEN

GPUFIT SOFTWARE LICENSE

MIT License
Copyright (c) 2017 Mark Bates, Adrian Przybylski, Bjorn Thiel, and Jan Keller-Findeisen

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN AC-
TION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

54

	Introduction
	How to cite Gpufit
	Hardware requirements
	Software requirements

	Installation and Testing
	Gpufit binary distribution
	Building from source code
	Prerequisites
	Source code availability
	Compiler configuration via CMake
	Using the CMake Graphical User Interface
	Running CMake from the command line
	Common issues encountered during CMake configuration
	Compiling Gpufit on Windows
	Compiling Gpufit on Linux
	MacOS

	Using cuBLAS
	Running the performance test

	Gpufit API description
	C Interface
	gpufit()
	Description of input parameters
	Description of output parameters

	gpufit_constrained()
	Description of constraints input parameters

	gpufit_cuda_interface()
	Description of input parameters
	Description of input/output parameters
	Description of output parameters

	gpufit_constrained_cuda_interface()
	Description of constraint input parameters

	gpufit_portable_interface()
	Description of parameters

	gpufit_constrained_portable_interface()
	Description of parameters

	gpufit_get_last_error()
	gpufit_cuda_available()
	gpufit_get_cuda_version()

	Fit Model functions
	Note: Handling of independent variables
	Linear regression
	1D Gaussian function
	2D Gaussian function (cylindrical symmetry)
	2D Gaussian function (elliptical)
	2D Gaussian function (elliptical, rotated)
	2D Cauchy function (elliptical)
	1D Spline function
	2D Spline function
	3D Spline function
	3D Multichannel Spline function
	3D Multichannel Spline function with variable phase

	Estimator functions
	Least squares estimator
	Maximum likelihood estimator for data subject to Poisson statistics

	Examples in C++
	Simple example (minimal call to gpufit())
	Example of 2D Gaussian fits
	Output statistics

	Linear Regression Example

	Customization
	Add a new fit model function
	Add a new fit estimator
	Future releases

	External bindings
	Optional parameters with default values
	Python
	Installation
	Python Interface
	fit
	fit_constrained
	get_last_error
	cuda_available
	get_cuda_version

	Python Examples
	2D Gaussian peak example
	2D Gaussian peak constrained fit example

	Matlab
	Matlab Interface
	gpufit
	gpufit_constrained
	gpufit_cuda_available

	Matlab Examples
	Simple example
	2D Gaussian peak example
	2D Gaussian peak constrained fit example

	Java
	Installation
	Java Interface
	Gpufit.fit
	Gpufit.getLastError
	Gpufit.isCudaAvailable
	get_cuda_version

	Java Example
	2D Gaussian peak example

	Appendix
	Levenberg-Marquardt algorithm
	Performance comparison to other GPU benchmarks

	Gpufit software license

